Research Article |
Corresponding author: Cássio Cardoso Pereira ( cassiocardosopereira@gmail.com ) Academic editor: Ana Maria Leal-Zanchet
© 2019 Cássio Cardoso Pereira, Fernanda de Fátima Santos Soares, Rúbia Santos Fonseca, Nathália Ribeiro Henriques, Daniel Meira Arruda.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Pereira CC, Santos Soares FF, Fonseca RS, Henriques NR, Arruda DM (2019) Ferruginous Rupestrian Savannah: a floristic and structural analysis of these rare environments. Neotropical Biology and Conservation 14(4): 381-397. https://doi.org/10.3897/neotropical.14.e47228
|
The flora of the Rupestrian Savannah (Cerrado Rupestre) is composed of widely distributed species and endemic species from high altitude rocky outcrops. The aim of this study was to characterise the floristic composition, structure and diversity of fragments of Rupestrian Savannah in south-eastern Brazil and to examine the similarity with other rupestrian cerrado vegetations and with cerrado sensu stricto on profound soils. For this, phytosociological parameters, evenness and diversity were calculated and compared with other studies. The survey exhibited 72 species, 45 genera, 30 families and high floristic similarity with cerrado on profound soils. There were no indicator species of the Rupestrian Savannah, but there were typical species of rocky environments. The basal area was significantly larger in the profound soil cerrado in relationship to the Rupestrian Savannah and evenness was lower in the Rupestrian Savannah of this study compared to others. These variables reflect the lower exploration capacity of the root of rocky environments. The highest similarity between the Rupestrian Savannah and cerrado on profound soils refers to the canga ferruginous nature, which represents the limit of the tableland of cerrado on the edge of the plateaus, allowing greater sharing of flora.
Brazilian flora, cerrado sensu stricto, floristic similarity, ironstone outcrop, species distribution
The Cerrado constitutes the second largest Brazilian plant domain and the richest savannah in the world (
The core area of the Cerrado sensu lato is clearly a continuum, with physiognomies that vary from grassland to forest (
The Cerrado vegetations occurs in various types of soil, but most of them are well drained, profound, acidic, nutrient poor and present high aluminium saturation (
Studies conducted in areas of the Rupestrian Savannah reveal differences in density, basal area and richness in relation to cerrado s.s. on profound soils (
Aiming for a better understanding of this plant formation, the objective of this study is to characterise the floristic composition, structure and diversity of a fragment of the Rupestrian Savannah and to examine the similarity amongst other Rupestrian Savannah areas and cerrado s.s. on profound soils to answer the following questions: i) Is this remnant more similar to other Rupestrian Savannah vegetations or to cerrado s.s.? ii) Are there species indicators of the Rupestrian Savannah? iii) Does the structure of the vegetation differ between the Rupestrian Savannah and those found on profound soils? iv) Do the richness and diversity from Rupestrian Savannah differ from those observed on profound soils?
Five fragments of Rupestrian Savannah located in Rio Paranaíba, state of Minas Gerais, south-eastern Brazil (19°11'38"S, 46°14'49"W) have been evaluated (Fig.
Geographic location (A) and aerial image of the border of the Rio Paranaíba plateau (B), Minas Gerais, south-eastern Brazil (image: Google Earth, 2019). The Rupestrian Savannah fragments have soils with ferruginous concretions (canga) and can be found in the form of continuous crust (C) or in blocks (D). The grey outline on the map represents the state of Minas Gerais and the star is the location of the municipality of Rio Paranaíba.
For the survey of woody species, 10 plots of 10 × 10 m were allocated at random on each of the five fragments, totalling 0.5 ha. All individuals with basal stem diameters (BSD) equal to or larger than 3.0 cm were evaluated in each of the plots (
Characteristics of Rupestrian Savannah and deep soil cerrado surveys conducted in Minas Gerais and Goiás states, Brazil, for the comparison of the present study. BSC = basal stem circumference; BSD = basal stem diameter.
Municipality/ Vegetation (Abbreviation) | Substrate | Area sampled (ha) | Inclusion criteria (cm) | Method | Richness | Diversity (H’) | Equability (J’) | Basal area (m2/ha) | Density (ind/ha) | Source |
Paraopeba-MG/ deep soil cerrado (PAS) | Dark-Red Latosol, Red-Yellow Latosol and Yellow Latosol | 1 | BSD ≥ 5 | Plots | 73 | 3.57 | 0.83 | 18.13 | 1990 |
|
Caldas Novas –GO/ deep soil cerrado (CNS) | Dark-Red Latosol, Red-Yellow Latosol | 6 | BSC ≥ 13 | Square points | 67 | – | 0.72 | 16.25 Area 1, 19.46 Area 2 | 1907 Area1, 2124 Area 2 |
|
Abaeté- MG/ deep soil cerrado (ABS) | Dystrophic Red Latosol | 0.3 | BSC ≥ 10 | Plots | 85 | 3.5 | 0.8 | 29.97 | 4463.3 |
|
Cocalzinho de Goiás/ Rupestrian Savannah (COC) | Quartzite and Quartzite-derived rock outcrops | 1 | BSD ≥ 5 | Plots | 65 | 3.45 | 0.83 | 5.67 | 674 |
|
Pirenópolis-GO/ Rupestrian Savannah (APR) | Litholic, Cambisol | 1 | BSD ≥ 5 | Plots | 65 | 3.65 | 0.87 | 11.03 | 1105 |
|
Caldas Novas –GO/ Rupestrian Savannah (CNR) | Cambisols and Litholic Neosols | 1 | BSD ≥ 5 | Plots | 66 | 3.33 | 0.79 | 12.39 | 1357 | Lima et al. (2010) |
Alto Paraíso-GO/ Rupestrian Savannah (PLR) | Litholic Neosols, Cambisols and Quartz Sands associated with quartzite outcrops | 1 | BSD ≥ 5 | Plots | 71 | 2.81 | 0.66 | 11.25 | 1977 |
|
Cerrado-Amazonian Forest transition-MT/ Rupestrian Savannah (CFL) | Dystrophic Red-Yellow Latosol | 1 | BSD ≥ 3 | Plots | 85 | 3.45 | 0.77 | 15.72 | 376 |
|
Serra Negra-GO/ Rupestrian Savannah (SENrup) | Quartzite and Quartzite-derived rock outcrops | 1 | BSD ≥ 5 | Plots | 61 | – | – | 11.7 | 931 |
|
Serra Negra-GO/ cerrado s.s. (SENss) | Red-Yellow Latosol | 1 | BSD ≥ 5 | Plots | 60 | – | – | 13.04 | 1078 |
|
FLONA de Paraopeba-MG/ cerrado s.s. (PARyl) | Yellow Latosol | 0.5 | BSD ≥ 10 | Plots | 61 | 3.35 | 0.81 | 19.27 | 3365 |
|
FLONA de Paraopeba-MG/ cerrado s.s. (PARhc) | Haplic cambisol | 0.5 | BSD ≥ 10 | Plots | 53 | 2.85 | 0.72 | 19.32 | 3910 |
|
Bacaba Municipal Park-GO/ Rupestrian Savannah (BACrup) | Dystrophic, alic and acidic cambisols | 1 | BSD ≥ 3 | Plots | 78 | – | – | 13.00 | 2171 |
|
Bacaba Municipal Park-GO/ cerrado s.s. (BACss) | Quartzic lithic neosol | 1 | BSD ≥ 3 | Plots | 89 | – | – | 8.70 | 1523 |
|
Salto de São Domingos-GO/ Rupestrian Savannah (SSD) | – | 1 | BSD ≥ 5 | Plots | 58 | 1.51 | 0.37 | 4.6 | 543 |
|
Sul de Minas gerais/ Rupestrian Savannah (SMGrup) | Litholic Neosol | 1 | BSD ≥ 5 | Plots | 47 | 3.10 | 0.79 | 10.91 | 769.16 |
|
Sul de Minas gerais/ cerrado s.s. (SMGss) | Red Argisol | 1 | BSD ≥ 5 | Plots | 46 | 3.19 | 0.83 | 5.20 | 717.78 |
|
Rio Paranaíba-MG/ Rupestrian Savannah (RPR) | Litholic Neosol with ferruginous concretions | 0.5 | BSD ≥ 3 | Plots | 72 | 2.89 | 0.67 | 9.19 | 2574 | Present study |
The phytosociological parameters (density, basal area), equitability and diversity (Shannon’s diversity index – H’) were calculated using the FITOPAC software (
In the Rupestrian Savannah of Rio Paranaíba, 1,287 individuals were sampled, corresponding to 72 species, 44 genera and 29 families. Six species, represented by only one individual each, remained undetermined, because they did not provide leaves or reproductive material during the development of the experiment. This vegetation exhibited a density of 2574 ind/ha and a basal area of 9.19 m2/ha (Table
The 10 most important species in terms of importance value (IV) (Table
Phytosociological parameters of species sampled in canga at Rio Paranaíba, Minas Gerais, south-eastern Brazil. AD = absolute density; ADo = absolute dominance; AF = absolute frequency; IV = importance value; N = number of individuals; RD = relative density; RDo = relative dominance; RF = relative frequency.
Species | N | AD | RD | AF | RF | ADo | RDo | IV |
---|---|---|---|---|---|---|---|---|
Dalbergia miscolobium Benth. | 363 | 726.0 | 28.21 | 86.00 | 10.14 | 8.42 | 45.81 | 84.15 |
Erythroxylum daphnites Mart. | 191 | 382.0 | 14.84 | 84.00 | 9.91 | 1.43 | 7.79 | 32.54 |
Qualea multiflora Mart. | 128 | 256.0 | 9.95 | 68.00 | 8.02 | 1.23 | 6.71 | 24.68 |
Aspidosperma tomentosum Mart. | 79 | 158.0 | 6.14 | 72.00 | 8.49 | 1.53 | 8.34 | 22.97 |
Erythroxylum tortuosum Mart. | 34 | 68.0 | 2.64 | 40.00 | 4.72 | 0.25 | 1.37 | 8.73 |
Lafoensia pacari A.St.-Hil. | 47 | 94.0 | 3.65 | 20.00 | 2.36 | 0.41 | 2.24 | 8.25 |
Heteropterys byrsonimifolia A.Juss. | 20 | 40.0 | 1.55 | 22.00 | 2.59 | 0.54 | 2.92 | 7.07 |
Plenckia populnea Reissek | 35 | 70.0 | 2.72 | 24.00 | 2.83 | 0.27 | 1.47 | 7.02 |
Kielmeyera petiolaris Mart. | 18 | 36.0 | 1.40 | 16.00 | 1.89 | 0.66 | 3.57 | 6.85 |
Virola sebifera Aubl. | 30 | 60.0 | 2.33 | 22.00 | 2.59 | 0.18 | 1.00 | 5.92 |
Hancornia speciosa Gomes | 18 | 36.0 | 1.40 | 18.00 | 2.12 | 0.28 | 1.53 | 5.05 |
Palicourea rigida Kunth | 21 | 42.0 | 1.63 | 24.00 | 2.83 | 0.10 | 0.54 | 5.01 |
Miconia albicans (Sw.) Triana | 15 | 30.0 | 1.17 | 22.00 | 2.59 | 0.17 | 0.93 | 4.69 |
Stryphnodendron adstringens (Mart.) Coville | 18 | 36.0 | 1.40 | 22.00 | 2.59 | 0.12 | 0.64 | 4.63 |
Eugenia sp. 2 | 19 | 38.0 | 1.48 | 20.00 | 2.36 | 0.10 | 0.52 | 4.36 |
Myrcia splendens (Sw.) DC. | 18 | 36.0 | 1.40 | 18.00 | 2.12 | 0.07 | 0.38 | 3.91 |
Banisteriopsis malifolia (Ness & Mart.) B.Gates | 14 | 28.0 | 1.09 | 20.00 | 2.36 | 0.07 | 0.35 | 3.80 |
Annona coriacea Mart. | 10 | 20.0 | 0.78 | 18.00 | 2.12 | 0.13 | 0.69 | 3.59 |
Guapira noxia (Netto) Lundell | 12 | 24.0 | 0.93 | 16.00 | 1.89 | 0.10 | 0.53 | 3.35 |
Styrax ferrugineus Nees & Mart. | 15 | 30.0 | 1.17 | 12.00 | 1.42 | 0.13 | 0.73 | 3.31 |
Xylopia sericia A.St.-Hil. | 21 | 42.0 | 1.63 | 8.00 | 0.94 | 0.13 | 0.70 | 3.28 |
Caryocar brasiliense Cambess. | 5 | 10.0 | 0.39 | 6.00 | 0.71 | 0.30 | 1.60 | 2.70 |
Byrsonima verbascifolia (L.) DC. | 9 | 18.0 | 0.70 | 12.00 | 1.42 | 0.07 | 0.40 | 2.51 |
Pouteria torta (Mart.) Radlk. | 12 | 24.0 | 0.93 | 8.00 | 0.94 | 0.10 | 0.53 | 2.41 |
Vochysia thyrsoidea Pohl | 7 | 14.0 | 0.54 | 4.00 | 0.47 | 0.22 | 1.20 | 2.22 |
Miconia sp. 1 | 9 | 18.0 | 0.70 | 6.00 | 0.71 | 0.15 | 0.80 | 2.21 |
Undetermined 1 | 7 | 14.0 | 0.54 | 10.00 | 1.18 | 0.02 | 0.12 | 1.84 |
Myrtaceae sp. 1 | 8 | 16.0 | 0.62 | 6.00 | 0.71 | 0.07 | 0.37 | 1.70 |
Myrtaceae sp. 2 | 5 | 10.0 | 0.39 | 6.00 | 0.71 | 0.10 | 0.53 | 1.63 |
Psidium pohlianum O. Berg | 3 | 6.0 | 0.23 | 6.00 | 0.71 | 0.13 | 0.69 | 1.63 |
Machaerium sp. 2 | 10 | 20.0 | 0.78 | 4.00 | 0.47 | 0.06 | 0.35 | 1.60 |
Undetermined 2 | 5 | 10.0 | 0.39 | 8.00 | 0.94 | 0.03 | 0.17 | 1.50 |
Connarus suberosus Planch. | 5 | 10.0 | 0.39 | 6.00 | 0.71 | 0.04 | 0.20 | 1.30 |
Eugenia sp. 1 | 5 | 10.0 | 0.39 | 6.00 | 0.71 | 0.03 | 0.17 | 1.27 |
Qualea parviflora Mart. | 3 | 6.0 | 0.23 | 4.00 | 0.47 | 0.10 | 0.54 | 1.25 |
Tocoyena formosa (Cham. & Schltdl.) Schum. | 4 | 8.0 | 0.31 | 6.00 | 0.71 | 0.03 | 0.15 | 1.17 |
Byrsonima crassifolia (L.) Kunth | 4 | 8.0 | 0.31 | 4.00 | 0.47 | 0.04 | 0.23 | 1.01 |
Myrcia variabilis DC. | 3 | 6.0 | 0.23 | 6.00 | 0.71 | 0.01 | 0.04 | 0.98 |
Undetermined 5 | 2 | 4.0 | 0.16 | 4.00 | 0.47 | 0.05 | 0.28 | 0.90 |
Machaerium sp. 1 | 4 | 8.0 | 0.31 | 4.00 | 0.47 | 0.01 | 0.06 | 0.84 |
Qualea grandiflora Mart. | 2 | 4.0 | 0.16 | 4.00 | 0.47 | 0.04 | 0.20 | 0.83 |
Banisteriopsis sp. | 3 | 6.0 | 0.23 | 4.00 | 0.47 | 0.02 | 0.09 | 0.79 |
Byrsonima coccolobifolia Kunth | 2 | 4.0 | 0.16 | 4.00 | 0.47 | 0.03 | 0.17 | 0.79 |
Machaerium villosum Vogel | 2 | 4.0 | 0.16 | 4.00 | 0.47 | 0.03 | 0.14 | 0.77 |
Enterolobium gummiferum (Mart.) J.F.Macbr. | 2 | 4.0 | 0.16 | 4.00 | 0.47 | 0.03 | 0.14 | 0.77 |
Roupala montana Aubl. | 2 | 4.0 | 0.16 | 4.00 | 0.47 | 0.02 | 0.12 | 0.75 |
Erythroxylum campestre A.St.-Hil. | 2 | 4.0 | 0.16 | 4.00 | 0.47 | 0.02 | 0.11 | 0.73 |
Aegiphila lhotzkiana Cham. | 2 | 4.0 | 0.16 | 4.00 | 0.47 | 0.02 | 0.10 | 0.73 |
Piptocarpha rotundifolia (Less.) Baker | 2 | 4.0 | 0.16 | 2.00 | 0.24 | 0.06 | 0.33 | 0.73 |
Fabaceae sp. | 3 | 6.0 | 0.23 | 2.00 | 0.24 | 0.04 | 0.23 | 0.70 |
Solanum lycocarpum A.St.-Hil. | 3 | 6.0 | 0.23 | 2.00 | 0.24 | 0.02 | 0.10 | 0.57 |
Pouteria ramiflora (Mart.) Radlk. | 2 | 4.0 | 0.16 | 2.00 | 0.24 | 0.02 | 0.10 | 0.49 |
Rudgea viburnoides (Cham.) Benth. | 2 | 4.0 | 0.16 | 2.00 | 0.24 | 0.01 | 0.06 | 0.46 |
Ouratea castaneifolia (DC.) Engl. | 1 | 2.0 | 0.08 | 2.00 | 0.24 | 0.03 | 0.14 | 0.45 |
Terminalia argentea Mart. | 1 | 2.0 | 0.08 | 2.00 | 0.24 | 0.03 | 0.14 | 0.45 |
Undetermined. 4 | 2 | 4.0 | 0.16 | 2.00 | 0.24 | 0.01 | 0.05 | 0.44 |
Erythroxylum sp. | 2 | 4.0 | 0.16 | 2.00 | 0.24 | 0.01 | 0.03 | 0.42 |
Undetermined 6 | 2 | 4.0 | 0.16 | 2.00 | 0.24 | 0.00 | 0.02 | 0.41 |
Tabebuia ochracea (Cham.) Standl. | 1 | 2.0 | 0.08 | 2.00 | 0.24 | 0.02 | 0.09 | 0.40 |
Zanthoxylum sp. | 1 | 2.0 | 0.08 | 2.00 | 0.24 | 0.01 | 0.07 | 0.38 |
Miconia sp. 2 | 1 | 2.0 | 0.08 | 2.00 | 0.24 | 0.01 | 0.06 | 0.38 |
Myrcia sp. | 1 | 2.0 | 0.08 | 2.00 | 0.24 | 0.01 | 0.06 | 0.37 |
Blepharocalyx salicifolius (Kunth) O.Berg | 1 | 2.0 | 0.08 | 2.00 | 0.24 | 0.01 | 0.05 | 0.36 |
Malpighiaceae sp. | 1 | 2.0 | 0.08 | 2.00 | 0.24 | 0.01 | 0.05 | 0.36 |
Myrtaceae sp. 3 | 1 | 2.0 | 0.08 | 2.00 | 0.24 | 0.01 | 0.03 | 0.35 |
Pera glabrata (Schott) Poepp. Ex Baill. | 1 | 2.0 | 0.08 | 2.00 | 0.24 | 0.00 | 0.02 | 0.33 |
Spiranthera odoratissima A.St.-Hil. | 1 | 2.0 | 0.08 | 2.00 | 0.24 | 0.00 | 0.02 | 0.33 |
Myrcia língua (O.Berg) Mattos | 1 | 2.0 | 0.08 | 2.00 | 0.24 | 0.00 | 0.01 | 0.33 |
Cabralea canjerana (Vell.) Mart. | 1 | 2.0 | 0.08 | 2.00 | 0.24 | 0.00 | 0.01 | 0.32 |
Neea theifera Oerst. | 1 | 2.0 | 0.08 | 2.00 | 0.24 | 0.00 | 0.01 | 0.32 |
Undetermined 3 | 1 | 2.0 | 0.08 | 2.00 | 0.24 | 0.00 | 0.01 | 0.32 |
Couepia grandiflora (Mart. & Zucc.) Benth. | 1 | 2.0 | 0.08 | 2.00 | 0.24 | 0.00 | 0.01 | 0.32 |
As for the floristic similarity amongst communities, the TWINSPAN analysis indicated weak differentiation of two groups in the first division (autovalue of 0.399) (Fig.
Dendrogram formed from the divisional cluster analysis (TWINSPAN) showing the relationship of floristic similarity amongst cerrado communities. ABS = Abaeté-MG; APR = Pirenópolis-GO; BAC = Bacaba Municipal Park-GO; CFL= Rupestrian Savannah in the transition Cerrado-Amazonian Forest; CNR = Caldas Novas-GO; CNS = Caldas Novas-GO; COC = Cocalzinho de Goiás-GO; PARhc = FLONA de Paraopeba-MG with haplic cambissol; PARyl = FLONA de Paraopeba-MG with yellow latossol; PAS = Paraopeba-MG; PLR = Alto Paraíso-GO; RPR = Rio Paranaíba-MG; SEN = Serra Negra-GO; SMG = Sul de Minas Gerais; SSD = Salto de São Domingos-GO. Italic = Rupestrian Savannah.
The basal area was significantly larger in cerrado on profound soil comparatively to the Rupestrian Savannah areas (t = 3.17, P = 0.02), whereas density (t = 1.24, P 0.26), richness (t = 1.33, P = 0.24) and diversity (t = 1.23, P = 0.28) did not differ amongst them. The evenness of distribution amongst species, represented by the Pielou evenness (J = 0.37), was lower in the Rupestrian Savannah.
List of indicator species of the groups formed by TWINSPAN analysis. The meaning of community acronyms are in Fig.
Family/species | Groups | Communities |
---|---|---|
Anacardiaceae R.Br. | ||
Anacardium occidentale L. | E | BACrup, BACss, CFL |
Tapirira guianensis Aubl. | C | ABS, PARhc, PARyl, PAS |
Annonaceae Juss. | ||
Annona coriacea Mart. | E | BACrup, BACss, CFL |
Annona crassiflora Mart. | C | ABS, PARhc, PARyl, PAS |
Xylopia aromatica (Lam.) Mart. | Not preferred, C | ABS, PARhc, PARyl, PAS |
Xylopia sericea A.St.-Hil. | B | RPR |
Apocynaceae Juss. | ||
Hancornia speciosa Gomes | B | RPR |
Himatanthus obovatus (Müll. Arg.) Woodson | E | BACrup, BACss, CFL |
Araliaceae Juss. | ||
Schefflera macrocarpa (Cham. & Schltdl.) Frodin | Not preferred, C, F | ABS, CNR, CNS, PARhc, PARyl, PAS, SSD |
Asteraceae Bercht. & J.Presl | ||
Baccharis dracunculifolia DC. | A | SMGrup, SMGss |
Eremanthus elaeagnus (Mart. ex DC.) Sch.Bip. | A | SMGrup, SMGss |
Eremanthus glomerulatus Less. | A | SMGrup, SMGss |
Moquiniastrum polymorphum (Less.) G. Sancho | A | SMGrup, SMGss |
Bignoniaceae Juss. | ||
Cybistax antisyphilitica (Mart.) Mart. | E | BACrup, BACss, CFL |
Fridericia cinnamomea (DC.) L.G.Lohmann | E | BACrup, BACss, CFL |
Handroanthus serratifolius (Vahl) S.Grose | A | SMGrup, SMGss |
Zeyheria montana Mart. | C | ABS, PARhc, PARyl, PAS |
Boraginaceae Juss. | ||
Cordia trichotoma (Vell.) Arráb. ex Steud. | A | SMGrup, SMGss |
Burseraceae Kunth | ||
Protium heptaphyllum (Aubl.) Marchand | E | BACrup, BACss, CFL |
Calophyllaceae J.Agardh | ||
Kielmeyera petiolaris Mart. & Zucc. | B | RPR |
Caryocaraceae Szyszył. | ||
Caryocar brasiliense Cambess. | Not preferred | – |
Celastraceae R.Br. | ||
Peritassa campestris (Cambess.) A.C. Sm. | E | BACrup, BACss, CFL |
Clethraceae Klotzsch | ||
Clethra scabra Pers. | A | SMGrup, SMGss |
Connaraceae R.Br. | ||
Rourea induta Planch. | E | BACrup, BACss, CFL |
Dilleniaceae Salisb. | ||
Curatella americana L. | C | ABS, PARhc, PARyl, PAS |
Erythroxylaceae Kunth | ||
Erythroxylum campestre A.St.-Hil. | B | RPR |
Erythroxylum suberosum A.St.-Hil. | Not preferred, C | ABS, PARhc, PARyl, PAS |
Erythroxylum tortuosum Mart. | Not preferred | – |
Fabaceae Lindl. | ||
Bowdichia virgilioides Kunth | Not preferred, C | ABS, PARhc, PARyl, PAS |
Dalbergia miscolobium Benth. | E | BACrup, BACss, CFL |
Dalbergia villosa (Benth.) Benth. | A | SMGrup, SMGss |
Dimorphandra mollis Benth. | C, E | ABS, BACrup, BACss, CFL, PARhc, PARyl, PAS |
Hymenaea stigonocarpa Mart. ex Hayne | Not preferred | – |
Leptolobium dasycarpum Vogel | Not preferred, C | ABS, PARhc, PARyl, PAS |
Machaerium hirtum (Vell.) Stellfeld | A | SMGrup, SMGss |
Machaerium opacum Vogel | C | ABS, PARhc, PARyl, PAS |
Machaerium villosum Vogel | B | RPR |
Mimosa laticifera Rizzini & A.Mattos | E | BACrup, BACss, CFL |
Pterodon pubescens (Benth.) Benth. | E | BACrup, BACss, CFL |
Stryphnodendron rotundifolium Mart. | D | SENrup, SENss |
Tachigali aurea Tul. | C | ABS, PARhc, PARyl, PAS |
Tachigali subvelutina (Benth.) Oliveira-Filho | F | CNR, CNS, SSD |
Lamiaceae Martinov | ||
Vitex megapotamica (Spreng.) Moldenke | A | SMGrup, SMGss |
Lauraceae Juss. | ||
Ocotea pomaderroides (Meisn.) Mez | G | APR, COC, PLR |
Loganiaceae R.Br. ex Mart. | ||
Antonia ovata Pohl | E | BACrup, BACss, CFL |
Malpighiaceae Juss. | ||
Banisteriopsis malifolia (Nees & Mart.) B.Gates | B | RPR |
Byrsonima coccolobifolia Kunth | Not preferred | – |
Diplopterys pubipetala (A.Juss.) W.R.Anderson & C.C.Davis | E | BACrup, BACss, CFL |
Heteropterys byrsonimifolia A.Juss. | E | BACrup, BACss, CFL |
Melastomataceae A. Juss. | ||
Miconia tristis Spring | A | SMGrup, SMGss |
Myrtaceae Juss. | ||
Blepharocalyx salicifolius (Kunth) O.Berg | B | RPR |
Eugenia dysenterica (Mart.) DC. | C | ABS, PARhc, PARyl, PAS |
Eugenia gemmiflora O.Berg | E | BACrup, BACss, CFL |
Myrcia lanuginosa O.Berg | E | BACrup, BACss, CFL |
Myrcia tomentosa (Aubl.) DC. | C | ABS, PARhc, PARyl, PAS |
Myrcia variabilis DC. | B | RPR |
Psidium pohlianum O.Berg | B | RPR |
Psidium salutare (Kunth) O.Berg | D | SENrup, SENss |
Siphoneugena densiflora O.Berg | A | SMGrup, SMGss |
Nyctaginaceae Juss. | ||
Guapira graciliflora (Mart. ex Schmidt) Lundell | E | BACrup, BACss, CFL |
Ochnaceae DC. | ||
Ouratea hexasperma (A.St.-Hil.) Baill. | E | BACrup, BACss, CFL |
Proteaceae Juss. | ||
Roupala montana Aubl. | Not preferred | - |
Rubiaceae Juss. | ||
Palicourea rigida Kunth | F | CNR, CNS, SSD |
Tocoyena formosa (Cham. & Schltdl.) K.Schum. | Not preferred, E | BACrup, BACss, CFL |
Rutaceae A.Juss. | ||
Spiranthera odoratissima A.St.-Hil. | B | RPR |
Salicaceae Mirb. | ||
Casearia sylvestris Sw. | E | BACrup, BACss, CFL |
Sapotaceae Juss. | ||
Pouteria torta (Mart.) Radlk. | B | RPR |
Styracaceae DC. & Spreng. | ||
Styrax camporum Pohl | C | ABS, PARhc, PARyl, PAS |
Vochysiaceae A.St.-Hil. | ||
Qualea dichotoma (Mart.) Warm. | A | SMGrup, SMGss |
Qualea grandiflora Mart. | Not preferred | – |
Qualea multiflora Mart. | Not preferred | – |
Qualea parviflora Mart. | Not preferred | – |
The Ferruginous Rupestrian Savannah of the present study proved to be similar to other cerrado s.s. of the domain. Thus, the presence of shallow soils seems to be an effective environmental filter only for the basal area, restricting the species to greater biomass gain.
Similarly to other studies areas of Rupestrian Savannah (
The highest similarity between Rupestrian Savannah of Rio Paranaíba and areas of cerrado on profound soil can also be related to the wide occurrence of the species found in this studied environment. Most of the species found in the studied area are common to other phytogeographical domains and also occur in forests. According to
The Rupestrian Savannah of Rio Paranaíba showed a small number of species (the first 10 in IV) that comprise more than 50% of the density. This fact was considered common by
Despite the fact that richness and density of the Rupestrian Savannah of Rio Paranaíba were statistically similar when compared to the other areas, the basal area was one of the smallest amongst the comparative studies (
Although Mimosa setosissima Taub., Tibouchina papyrus (Pohl) Toledo, Wunderlichia mirabilis Riedel ex Baker and Hyptis pachyphylla Epling have been considered typical species of Rupestrian Savannah (
The broad occurrence of generalist species in Rupestrian Savannah was also recorded in other regions of Brazil (e.g.
It is probable that the differentiation of the Ferruginous Rupestrian Savannah can be captured in non-arboreal stratum. An explanation for that is the fact that the high endemism cited for rupestrian environments seems to be more strongly associated with the herbaceous stratum represented by the families Asteraceae, Celastraceae, Cyperaceae, Eriocaulaceae, Lamiaceae, Melastomataceae, Poaceae, Velloziaceae, Verbenaceae and Xyridaceae (
Lastly, the woody flora of the Rupestrian Savannah of Rio Paranaíba is a combination of species widely distributed in the Cerrado sensu lato. The greater similarity between the Rupestrian Savannah of Rio Paranaíba and the profound soil cerrado can be explained by the ferruginous nature of the canga, which is more similar to the Latosols than the rocky outcrops of quartzite or arenite nature, evidencing the influence of the substrate on the species occurring in one area. This study provides important information on the flora associated with these phytophysiognomies and contributes to a better understanding of these rare environments, potentially aiding to subsidise the determination of priority areas for conservation.
The authors would like to thank UFMG and CAPES for continuous support. We thank Tatiana Cornelissen who helped us improve the clarity of an earlier version of this manuscript. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.