Review Article
Print
Review Article
Pollination of Guatemalan orchids – state of knowledge
expand article infoMonika M. Lipińska§, Cecylia Barabasz|
‡ University of Gdańsk, Gdańsk, Poland
§ Foundation Polish Orchid Association, Sopot, Poland
| University of Gdansk, Warsaw, Poland
Open Access

Abstract

This literature review aims to synthesise existing knowledge on research on pollination of orchid species in Guatemala. Orchids, known for their diverse and specialised interactions with pollinators, play a key role in the ecosystems of this Central American country. As a base for our research, we have used the orchid checklist published in 2018 where more than 1200 taxa have been listed. Then we conducted a systematic search of academic databases, including, but not limited to PubMed, Web of Science, Scopus and relevant botanical databases. From 1231 orchid species reported to occur in Guatemala and classified in 221 genera, we have found data on pollination of only 98 taxa, classified in 71 genera. Through an exhaustive survey of the relevant scientific literature, this review intends to provide a comprehensive summary of the available data, highlighting gaps in current knowledge and suggesting directions for future research. Research on pollination in tropical orchids presents a formidable challenge due to the immense diversity of species, the intricacies of pollination mechanisms, the elusive nature of pollinators and the susceptibility of these ecosystems to environmental changes. Despite these challenges, the importance of unravelling these mysteries is underscored by the critical role orchids play in tropical ecosystems and their potential implications for conservation and biodiversity.

Key words

Biodiversity, flora of Guatemala, Orchidaceae, pollinators, pollination research, review

Introduction

Guatemala, with its remarkably varied topography and ecosystems, has long captivated the attention of researchers seeking to unravel the complexities of its biodiversity. Over the years, a multitude of studies have contributed to our understanding of the myriad species that inhabit this region, as well as the ecological processes that govern their existence.

Research in Guatemala has been diverse, spanning disciplines such as ecology, botany, zoology, genetics and environmental science. Studies have ranged from taxonomic explorations of new species to in-depth analyses of ecosystem dynamics and the impacts of anthropogenic activities. The collaborative efforts of local and international researchers have significantly expanded our knowledge base, revealing the intricacies of Guatemala’s unique flora and fauna. However, as in other countries in the region, pollination research seems to be still rather neglected (see data presented by Ackerman et al. (2023)). A substantial portion of research in Guatemala has focused on cataloguing and describing new species, contributing to the global understanding of biodiversity. Taxonomic studies have uncovered previously unknown flora and fauna, enriching our appreciation of the country’s biological diversity. Research has delved into the intricate relationships between species and their environments, examining the ecological roles different organisms play in various habitats. Understanding the dynamics of ecosystems, from the coastal regions to the highland cloud forests, has been crucial for devising effective conservation strategies. Investigations into the conservation status of key species and ecosystems have highlighted the vulnerabilities and threats faced by Guatemala’s biodiversity. Deforestation, habitat loss, climate change and other anthropogenic impacts demand urgent attention to safeguard the nation’s natural heritage (Dix and Dix 2007). Recognising the importance of local communities in biodiversity conservation, some studies have explored the integration of indigenous knowledge into conservation practices. Collaborative initiatives that involve local residents have proven instrumental in preserving both cultural traditions and biological diversity.

Amidst the rich tapestry of Guatemala’s diverse ecosystems lies a fascinating yet often overlooked phenomenon: the complex dance of orchid pollination. Orchids have long fascinated botanists, ecologists, nature lovers and others with their dazzling colours, shapes and scents. Located in the heart of Central America, Guatemala is home to an incredible variety of orchid species, each with its unique breeding strategy. From the misty highlands to the sun-bathed lowlands, the country hosts a breath-taking array of orchids, estimated at ca. 1,300 species (Archila et al. 2018). Guatemala’s diverse ecosystems, from cloud forests to tropical jungles, provide ideal niches for orchids to thrive and each species is uniquely adapted to its specific habitat. Guatemala’s orchid diversity not only contributes to the country’s ecological richness, but also underscores its role as a global hotspot for orchid enthusiasts eager to explore the wonders of these intricate and enticing botanical gems. Orchids have evolved diverse and sophisticated mechanisms to ensure successful pollination, highlighting the intricate relationships between these plants and their pollinators (Ackerman et al. 2023). The co-evolution of orchids with specific pollinators has resulted in a fascinating array of shapes, sizes and types of behaviour that contribute to the incredible diversity of the orchid family. Orchids employ a remarkable variety of strategies to attract pollinators and the specific pollinators can vary widely amongst different orchid species. They have evolved to attract specific pollinators through their unique shapes, colours and fragrances. Some common orchid pollinators include bees, wasps, flies or hummingbirds.

While orchids are a diverse and ecologically important plant group, many orchid species in Guatemala still have not been studied. Orchid pollination can be highly specialised and understanding these relationships is crucial for conservation efforts, especially in the face of environmental changes. This article provides a thorough and critical overview of the current state of knowledge about pollination biology of Guatemalan orchids, summarising decades of scientific research on this fascinating phenomenon. We synthesise findings from a variety of studies to define how much we know about the reproductive strategies of these unique plants. With this comprehensive review, we aim to provide a holistic understanding of current scientific knowledge, identify research gaps and provide insights that can serve as the basis for future research. By addressing existing knowledge gaps and highlighting emerging challenges, we aim to inspire a renewed commitment to the ongoing exploration and conservation of Guatemala’s extraordinary biodiversity.

Methodology

As a base for our research, we have used the orchid checklist published by Archila et al. in 2018 where more than 1200 taxa have been listed. Then we conducted a systematic search of academic databases, including, but not limited to PubMed, Web of Science, Scopus and relevant botanical databases. We utilised a combination of keywords such as “orchids”, “pollination”, “Guatemala” and related terms to ensure a comprehensive coverage of relevant literature. We have defined clear inclusion and exclusion criteria to filter the retrieved articles and included studies that specifically focus on the pollination of orchid species that are known to occur in Guatemala, encompassing various aspects such as floral morphology, pollinator behaviour and ecological interactions. We have excluded studies that did not provide solid data such as reports of pollinia transfer. Subsequently, we have performed an initial screening based on titles and abstracts to identify potentially relevant articles. After this initial screening, we thoroughly evaluated the full texts of selected articles to determine their suitability for inclusion in the review. As a result, we have included in our meta-analysis about 150 scientific publications. Then we extracted relevant information from the selected articles, including details about orchid species studied, pollinators identified, floral traits involved in pollination and ecological contexts. Finally, we have organised the extracted data into a structured framework for analysis.

Results

From 1231 orchid species reported to occur in Guatemala and classified in 221 genera, we have found data on pollination of only 98 taxa, classified in 71 genera (classification sensu Archila et al. (2018); detailed results presented in Table 1). Most of the information found was rather scarce and incomplete and only a few studies were conducted in Guatemala itself (see Fig. 1). Gathered data showed that, only for 22 genera (100% representatives), at least one pollinator is known and for as many as 150 genera, not a single effective pollinator has been documented. It should be noted that these 22 genera consist of 1–2 species only. We include also a summary of data on known pollinators taking into account the classification at the level of subtribes (Table 2).

Table 1.

Summary of data known pollinators taking into account the classification at the genus level.

No Orchid genus Subtribe Species number in Guatemala Species with known pollinator Species with known pollinator [%] Pollinator species Pollinator – functional group Report type Reference
1 Arundina Blume Arundiinae Dressler 1 1 100% Megachile yaeyamaensis, Nomia pavonura, Thyreus takaonis, Apis mellifera, Megacampsomeris mojiensis, Rhynchium quinquecinctum bees, wasps Pollinator observation Sugiura (2014)
2 Benzingia Dodson Huntleyinae Schltr. 1 1 100% Euglossa heterosticta Pollinator observation Roubik and Hanson (2004)
3 Brassavola R. Br Laeliinae Benth. 1 1 100% Manduca sexta, Protambulix strigilis moths Pollinator observation Chipka (2009)
4 Catasetum Rich. ex Kunth Catasetinae Schltr. 2 2 100% Centris mexicana, Eulaema meriana, E. cingulata, Exaerete frontalis, Euglossini, Eulaema polychroma bees Pollinator observation and floral attractants (chemistry) Whitten et al. (1986), Damon and Salas-Roblero (2007), Cancino and Damon (2007), Damon et. al. (2012), Hernández-Ramírez (2021)
5 Cischweinfia Dressler & N. H. Williams Trichopiliinae Pfitzer 1 1 100% Euglossini bees Pollinator observation Williams (1982)
6 Clowesia Lindl. Catasetinae Schltr. 2 2 100% Euglossa viridissima, Euplusia mexicana bees Pollinator observation Aguirre León (1979), Dodson (1975)
7 Comparettia Poepp. & Endl. Comparettiinae Schltr. 1 1 100% Colletes sp., Amazilia tzacatl, Chorostilbon maugaeus bees, hummingbirds Pollinator observation and floral attractants (nectar availability) van der Pijl and Dodson (1966), Rodríguez‐Robles et al. (1992), Icones Orchidacearum 5 & 6
8 Cycnoches Lindl. Catasetinae Schltr. 2 2 100% Euglossini: Euglossa tridentata, Eulaema cingulata, Euglossa mixta bees Pollinator observation and floral attractants (chemistry) Damon and Salas-Roblero (2007), Damon et al. (2012), Cancino and Damon (2007)
9 Cypripedium L. Cypripediinae Meisn. 2 2 100% Trigona spp., Halictidae Lasioglossum nyctere bees Pollinator observation Szlachetko et al. (2017), Lozano-Rodríguez et al. (2018)
10 Dichromanthus Garay Spiranthinae Lindl. 1 1 100% Amazilia berylina, Hylocharis leucotis hummingbirds Pollinator observation Sarmiento and Romero (2000), Hágsater et al. (2005)
11 Eulophia R. Br. Cymbidiinae Benth 1 1 100% Centris spp., Centris bicornuta, C. inermis, C. minuta, C. rubella, C. spilopoda, C. varia, Xylocopa muscaria, Megachile sp. bees Pollinator observation and floral attractants (chemistry) Jürgens et al. (2009)
12 Kefersteinia Rchb. F Huntleyinae Schltr. 1 1 100% Euglossini bees Pollinator observation Damon et al. (2012)
13 Macradenia R. Br. Macradeniinae Mansf. 1 1 100% Euglossa hemiehlora, E. villosiventris bees Pollinator observation Dressler (1993), van der Cingel (2001)
14 Mormolyca Fenzl Maxillariinae Benth. 1 1 100% Nannotrigona testaceicornis, Scaptotrigona sp. bees Pollinator observation and floral attractants (chemistry) Singer et. al. (2004), Flach et. al. (2006)
15 Oeceoclades Lindl. Cymbidiinae Benth 1 1 100% Nymphalidae, Heliconius ethilla narcaea, Heliconius eratophyllis butterflies Pollinator observation Aguiar et al. (2012)
16 Plectrophora H. Focke Oncidiinae Benth. 1 1 100% Eulaema meriana bees Pollinator observation Damon et. al. (2012)
17 Polycycnis Rchb. F Stanhopeinae Benth. 1 1 100% Eulaema speciosa bees Pollinator observation Dressler (1977)
18 Sacoila Raf. Stenorrhynchidinae Szlach. 1 1 100% Archilochus colubris hummingbirds Pollinator observation Catling (1987)
19 Sievekingia Lindl. ex Rchb. f. Stanhopeinae Benth. 1 1 100% Euglossa crassipunctata, E. cybelia, E. mixta, E. sapphirina, Euplusia mussitans, E. duckei bees Pollinator observation Dressler (1976)
20 Stanhopeastrum Rchb. f. Stanhopeinae Benth. 2 2 100% Eulaema luteola, Euplusia schmidtiana Euglossa sp., Euglossa flammea bees Pollinator observation Dressler (1968)
21 Trichocentrum Poepp. & Endl. Trichocentrinae Schltr. 1 1 100% Euglossini bees Pollinator observation Damon et al. (2012)
22 Unciferia Luer Pleurothallidinae Lindl. 2 2 100% Phoridae, Chloropidae flies Pollinator observation Karremans and Díaz Morales (2019)
23 Cohniella Pfitzer Oncidiinae Benth. 3 2 67% Centris sp. bees Pollinator observation Cetzal-Ix et al. (2013)
24 Aspasia Lindl. Oncidiinae Benth. 2 1 50% Euglossini Pollinator observation Ackerman (1983)
25 Cochleanthes Raf. Huntleyinae Schltr. 2 1 50% Euglossini, Eulaema sp. bees Pollinator observation Salguero and Pupulin (2019)
26 Corymborkis Thouars Tropidiinae Pfitzer 2 1 50% Phaethornis squalidus hummingbirds Pollinator observation and floral attractants (histochemistry) Vieira et al. (2007)
27 Ionopsis Kunth Ionopsidinae Pfitzer 2 1 50% Ceratina sp., Paratrigona lineata, Nannotrigona testaceicornis, Paratetrapedia flaveola, Augochlora sp. bees Pollinator observation and floral attractants (chemistry) Aguiar and Pansarin (2018), Aguiar et al. (2021)
28 Laelia Lindl. Laeliinae Benth. 2 1 50% Bombus medius bees Pollinator observation Flores et al. (1996)
29 Leochilus Knowles & Westc. Leochilinae Szlach. 4 2 50% Halictidae: Lasioglossum sp., Polybiine: Stelopolybia areata and S. hamiltoni, Polistinae, Pachoniderus nassidens bees, wasps Pollinator observation Chase (1986)
30 Meiracyllium Rchb. f. Meiracylliinae Dressler 2 1 50% Euglossini bees Pollinator observation Damon et al. (2012)
31 Senghasia Szlach. Huntleyinae Schltr. 2 1 50% Euglossini bees Pollinator observation Damon et. al. (2012)
32 Arpophyllum Lex. Arpophyllinae Dressler 5 2 40% Amazilia tzacatl hummingbirds Pollinator observation Karremans 2023, Icones Orchidacearum 5 & 6
33 Dryadella Luer Pleurothallidinae Lindl. 3 1 33% Drosophila sp. flies Pollinator observation Icones Orchidacearum 5 & 6
34 Masdevallia Ruiz & Pav Pleurothallidinae Lindl. 6 2 33% Zygothrica sp. flies Pollinator observation Lipińska et al. (2019)
35 Rossioglossum (Schltr.) Garay & G.C. Kenn. Oncidiinae Benth. 3 1 33% Centris sp. bees Pollinator observation van der Pijl and Dodson (1966)
36 Sarcoglottis C. Presl Cyclopogoninae Szlach. 7 2 29% Eulaema atleticana, E. niveofasciata, Euglossa variabilis, E. viridissima, E. tridentata bees Pollinator observation and floral attractants (chemistry) Damon and Salas-Roblero (2007), Albuquerque et. al. (2021)
37 Stanhopea J. Frost ex Hook Stanhopeinae Benth. 30 8 27% Euplusia mexicana, Eufriesia coerulescens, Eulaema cingulata, Eufriesea ornata, Euglossa viridissima, Euglossa variabilis, E. tridentate, E. atrovenata, E. townsendi, Eufriesia sp. bees Pollinator observation Dodson (1975), Icones Orchidacearum 5 & 6, Dressler (1968), Williams and Whitten (1983), Damon et. al. (2012), Damon and Salas-Roblero (2007)
38 Ornithidium Salisb. ex R. Br. Maxillariinae Benth. 4 1 25% Amazilia cyanocephala hummingbirds Pollinator observation and floral attractants (SEM, TEM, chemistry, histochemistry) Lipińska et al. (2022)
39 Phragmipedium Rolfe Phragmipediinae Szlach. 4 1 25% Self-pollinating N/A N/A Dressler and Pupulin (2011)
40 Prescottia Lindl. Prescottiinae Dressler 4 1 25% Pyralidae moths Pollinator observation Singer and Sazima (2001)
41 Spiranthes Rich. Spiranthinae Lindl. 4 1 25% Bombus spp., Apis mellifera, Augochlorella striata bees Pollinator observation Catling (1983)
42 Vanilla Mill. Vanillinae Lindl. 9 2 22% Eulaema polychroma, E. meriana, Euglossa viridissima, Euglossa spp., Eulaema spp., Eufriesea spp. bees Pollinator observation and floral attractants (chemistry) Vega et al. (2022 and references therein)
43 Acropera Lindl. Stanhopeinae Benth. 5 1 20% Euglossini bees Pollinator observation Damon et al. (2012)
44 Corallorhiza Gagnebin Corallorhizinae E.G. Camus, Bergon & A. Camus 5 1 20% Empis sp., Andrena sp. flies, bees Pollinator observation Kipping (1971), Luer (1975)
45 Guarianthe Dressler & W.E. Higgins Laeliinae Benth. 5 1 20% Euglossa viridisima bees Pollinator observation Pemberton (2007)
46 Myrmecophila Rolfe Laeliinae Benth. 5 1 20% Eulaema polychroma, Xylocopa sp. bees Pollinator observation and floral attractants (chemistry) Parra-Tabla et al. (2009)
47 Notylia Lindl. Notyliinae Benth. 5 1 20% Euglossa viridissima, E. variabilis, E. tridentata bees Pollinator observation and floral attractants (chemistry) Damon and Salas-Roblero (2007), Damon et. al. (2012), Cancino and Damon (2007)
48 Trichosalpinx Luer Pleurothallidinae Lindl. 10 2 20% Forcipomyia sp. flies Pollinator observation and floral attractants (SEM, histochemistry) Bogarín et al. (2018)
49 Cyclopogon C. Presl Cyclopogoninae Szlach. 12 2 17% Augochlora nausicaa, Caenaugochlora cupriventis bees Pollinator observation and floral attractants (SEM, chemistry, histochemistry) Benitez-Vieyra et al. (2006), Wiemer (2009), Juárez et al. (2016)
50 Trichopilia Lindl. Trichopiliinae Pfitzer 6 1 17% Euglossini bees Pollinator observation Damon and Salas-Roblero (2007)
51 Triphora Nutt. Triphorinae (Dressler) Szlach. 6 1 17% Bombus sp. bees Pollinator observation Williams (1994)
52 Barkeria Knowles & Westc. Laeliinae Benth. 7 1 14% Xylocopa tabaniformis, Amazilia tzacatl, Hylocharis leucocollis bees, hummingbirds Pollinator observation and floral attractants (SEM, TEM, FM, LM, Histochem) Van der Pijl (1966), Stpiczyńska et al. (2021), Warford (1993)
53 Brassia R. Br. Oncidiinae Benth. 7 1 14% Pepsis sp. wasps Pollinator observation Pupulin and Bogarin (2005)
54 Gongora Ruiz & Pav. Stanhopeinae Benth. 7 1 14% Euglossa purpurea bees Pollinator observation Dressler (1968)
55 Lophiaris Raf. Oncidiinae Benth. 7 1 14% Centris sp. bees Pollinator observation Cen (2016)
56 Mormodes Lindl. Catasetinae Schltr. 7 1 14% Euglossa viridissima, E. townsendi, E. tridentata, E. atrovenata bees Pollinator observation and floral attractants (chemistry) Damon and Salas-Roblero (2007), Damon et. al. (2012), Cancino and Damon (2007)
57 Ornithocephalus Hook. Ornithocephalinae Schltr. 8 1 13% Paratetrapedia calcarata bees Pollinator observation van der Cingel (2001)
58 Polystachya Hook. Polystachyinae Schltr. 8 1 13% Dialictus sp., Plebeia droryana, Tetragonisca angustula, Trigona spinipes, Paratetrapedia aff. fervida bees Pollinator observation Pansarin and Amaral (2006)
59 Isochilus R. Br. Laeliinae Benth. 9 1 11% Hylocharis leucotis hummingbirds Pollinator observation Icones Orchidacearum 10
60 Rhynchostele Rchb. f. Oncidiinae Benth. 9 1 11% Bombus sp. bees Pollinator observation Icones Orchidacearum 10
61 Specklinia Lindl. Pleurothallidinae Lindl. 21 2 10% Drosophila hydei, Cecidomyiidae, Phoridae flies Pollinator observation and floral attractants (SEM, TEM, chemistry) Damon and Salas-Roblero (2007), Karremans et al. (2015a, b),
62 Bletia Ruiz & Pav Bletiinae Benth. 11 1 9% Euglossa hemichlora, Melipona sp. Thygater sp. bees Pollinator observation Dressler (1968)
63 Dichaea Lindl. Dichaeinae Schltr. 23 2 9% Euglossini bees Pollinator observation Ackerman (1983)
64 Oncidium Sw. Oncidiinae Benth. 23 2 9% Paratetrapedia sp., Centris mexicana, C. nitida bees Pollinator observation Damon and Salas-Roblero (2007), Pemberton and Liu (2008), Silvera (2002)
65 Maxillaria Ruiz & Pav Maxillariinae Benth. 13 1 8% Trigona testacea, T. amalthea bees Pollinator observation van der Pijl and Dodson (1966)
66 Govenia Lindl. Goveniinae Dressler 15 1 7% Salpigogaster spp. flies Pollinator observation Pansarin (2008)
67 Sobralia Ruiz & Pav. Sobraliinae Schltr. 47 3 6% Euglossini bees Pollinator observation Damon and Salas-Roblero (2007), Damon et. al. (2012), Dressler (2012)
68 Encyclia Hook. Laeliinae Benth. 32 2 6% Xylocopa nautlana, X. fimbriata, Euglossa atrovenata, E. mixta, Eulaema meriana bees, wasps Pollinator observation and floral attractants (chemistry) Cancino and Damon (2006), Damon and Salas-Roblero (2007)
69 Habenaria Willd. Habenariinae Benth. 26 1 4% Anthoptus sp. moths Pollinator observation Kolanowska (2005)
70 Stelis Sw. Pleurothallidinae Lindl. 36 1 3% Sciaroidea flies Pollinator observation van der Pijl and Dodson (1966)
71 Epidendrum L. Epidendrinae Szlach. 113 1 1% Pseudosphinx tetrio moths Pollinator observation and floral attractants (SEM, TEM, chemistry) Knudsen and Tollsten (1993), Moya and Ackerman (1993), Ackerman and Montalvo (1990)
72 Acianthera Scheidw. Pleurothallidinae Lindl. 14 0 0%
73 Acineta Lindl. Stanhopeinae Benth. 3 0 0%
74 Adeneleutherophora Barb. Rodr. Elleanthinae Szlach. 3 0 0%
75 Amparoa Schltr. Oncidiinae Benth. 1 0 0%
76 Anathallis Barb. Rodr. Pleurothallidinae Lindl. 8 0 0%
77 Ancipitia (Luer) Luer Pleurothallidinae Lindl. 1 0 0%
78 Aspidogyne Garay Goodyerinae Klotzsch 3 0 0%
79 Aulosepalum Garay Spiranthinae Lindl. 1 0 0%
80 Barbosella Schltr. Pleurothallidinae Lindl. 2 0 0%
81 Beloglottis Schltr. Spiranthinae Lindl. 4 0 0%
82 Brachionidium Lindl. Pleurothallidinae Lindl. 2 0 0%
83 Brachystele Schltr. Spiranthinae Lindl. 1 0 0%
84 Buccella Luer Pleurothallidinae Lindl. 1 0 0%
85 Bulbophyllum Thouars Bulbophyllinae Schltr. 5 0 0%
86 Calanthe R. Br Bletiinae Benth. 1 0 0%
87 Callistanthos Szlach. Stenorrhynchidinae Szlach. 1 0 0%
88 Camaridium Lindl. Maxillariinae Benth. 1 0 0%
89 Campylocentrum Benth. Angraecinae Summerh. 10 0 0%
90 Caularthron Raf. Laeliinae Benth. 1 0 0%
91 Chelyorchis Dressler & N.H. Williams Oncidiinae Benth. 3 0 0%
92 Chondroscaphe (Dressler) Senghas & G. Gerlach Huntleyinae Schltr. 1 0 0%
93 Christensonella Szlach., Mytnik, Górniak & Śmiszek Maxillariinae Benth. 1 0 0%
94 Chysis Lindl. Chysiinae Schltr. 7 0 0%
95 Coelia Lindl. Coeliinae Dressler 5 0 0%
96 Coryanthes Hook. Stanhopeinae Benth. 11 0 0%
97 Cranichis Sw. Cranichidinae Lindl. 11 0 0%
98 Crossoliparis Marg. Malaxidinae Benth. & Hook. f. 1 0 0%
99 Cryptarrhena R. Br. Cryptarrheninae Dressler 2 0 0%
100 Cryptocentrum Benth. Maxillariinae Benth. 1 0 0%
101 Cuitlauzina La Llave & Lex. Oncidiinae Benth. 3 0 0%
102 Cyrtochiloides N.H. Williams & M.W. Chase Oncidiinae Benth. 1 0 0%
103 Cyrtopodium R. Br. Cyrtopodiinae Benth. 1 0 0%
104 Deiregyne Schltr Spiranthinae Lindl. 4 0 0%
105 Dimerandra Schltr. Epidendrinae Szlach. 1 0 0%
106 Dracontia (Luer) Luer Pleurothallidinae Lindl. 7 0 0%
107 Dracula Luer Pleurothallidinae Lindl. 2 0 0%
108 Dresslerella Luer Pleurothallidinae Lindl. 4 0 0%
109 Echinosepala Pridgeon & M.W. Chase Pleurothallidinae Lindl. 2 0 0% flies Floral attractants (SEM,TEM, chemistry) Cardoso-Gustavson et al. (2017), Arévalo-Rodrigues et al. (2021)
110 Elleanthus C. Presl Elleanthinae Szlach. 2 0 0%
111 Encabarcenia Archila & Szlach. Laeliinae Benth. 4 0 0%
112 Epistephium Kunth Vanillinae Lindl. 1 0 0%
113 Eriopsis Lindl. Eriopsidinae Szlach. 1 0 0%
114 Eurystyles Wawra Spiranthinae Lindl. 3 0 0%
115 Evelyna Poepp. & Endl. Elleanthinae Szlach. 1 0 0%
116 Funkiella Schltr. Stenorrhynchidinae Szlach. 3 0 0%
117 Galeandra Lindl. & F.A. Bauer Cyrtopodiinae Benth. 4 0 0%
118 Galeoglossum A. Rich. & Galeotti Prescottiinae Dressler 1 0 0%
119 Galeottia A. Rich. & Galeotti Zygopetalinae Schltr. 1 0 0%
120 Galeottiella Schltr. Galeottiellinae Salazar & M.W. Chase 1 0 0%
121 Goniochilus M.W. Chase Leochilinae Szlach. 1 0 0%
122 Goodyera R. Br. Goodyerinae Klotzsch 3 0 0%
123 Gracielanthus Tamayo & Szlach. Spiranthinae Lindl. 2 0 0%
124 Habenella Small Habenariinae Benth. 2 0 0%
125 Hapalorchis Schltr. Spiranthinae Lindl. 1 0 0%
126 Helleriella A.D. Hawkes Ponerinae Pfitzer 1 0 0%
127 Heterotaxis Lindl. Maxillariinae Benth. 5 0 0%
128 Hexalectris Raf. Bletiinae Benth. 3 0 0%
129 Homalopetalum Rolfe Ponerinae Pfitzer 2 0 0%
130 Houlletia Brongn. Stanhopeinae Benth. 1 0 0%
131 Huntleya Bateman ex Lindl. Huntleyinae Schltr. 2 0 0%
132 Jacquiniella Schltr. Epidendrinae Szlach. 6 0 0%
133 Javieria Archila, Chiron & Szlach. Laeliinae Benth. 6 0 0%
134 Kegeliella Mansf. Stanhopeinae Benth. 1 0 0%
135 Kionophyton Garay Spiranthinae Lindl. 2 0 0%
136 Kraenzlinella Kuntze Pleurothallidinae Lindl. 1 0 0%
137 Kreodanthus Garay Goodyerinae Klotzsch 3 0 0%
138 Lacaena Lindl. Stanhopeinae Benth. 1 0 0%
139 Lalexia Luer Pleurothallidinae Lindl. 2 0 0%
140 Lankesteriana Karremans Pleurothallidinae Lindl. 7 0 0%
141 Lepanthes Sw. Pleurothallidinae Lindl. 75 0 0%
142 Lepanthopsis (Cogn.) Ames Pleurothallidinae Lindl. 1 0 0% Floral attractants (SEM, LM, histochemistry) Bogarin et al. (2019)
143 Leucohyle Klotzsch Trichopiliinae Pfitzer 1 0 0%
144 Liparis Rich. Malaxidinae Benth. & Hook. f. 8 0 0%
145 Lockhartia Hook. Lockhartiinae Schltr. 4 0 0% Floral attractants (SEM, TEM, LM, histochemistry, chemistry) Blanco et al. (2013), Silvera (2002)
146 Lockhartiopsis Archila Lockhartiinae Schltr. 1 0 0%
147 Lophiarella Szlach., Mytnik & Romowicz Oncidiinae Benth. 2 0 0%
148 Lycaste Lindl. Lycastinae Schltr. 18 0 0%
149 Macroclinium Barb. Rodr. Notyliinae Benth. 3 0 0%
150 Malaxis Sol. ex Sw. Malaxidinae Benth. & Hook. f. 24 0 0%
151 Marsupiaria Hoehne Maxillariinae Benth. 1 0 0%
152 Matalbatzia Archila Oncidiinae Benth. 1 0 0%
153 Maxillariella M.A. Blanco & Carnevali Maxillariinae Benth. 10 0 0% Floral attractants (SEM, TEM, chemistry, histochemistry) Lipińska et al. (2021)
154 Mesadenella Pabst & Garay Stenorrhynchidinae Szlach. 2 0 0%
155 Mesadenus Schltr. Spiranthinae Lindl. 3 0 0%
156 Mesospinidium Rchb. f Ionopsidinae Pfitzer 1 0 0%
157 Microchilus C. Presl Goodyerinae Klotzsch 3 0 0%
158 Microthelys Garay Spiranthinae Lindl. 4 0 0%
159 Myoxanthus Poepp. & Endl. Pleurothallidinae Lindl. 3 0 0%
160 Nageliella L.O. Williams Ponerinae Pfitzer 2 0 0%
161 Nemaconia Knowles & Westc. Ponerinae Pfitzer 3 0 0%
162 Nidema Britton & Millsp. Ponerinae Pfitzer 2 0 0%
163 Nitidobulbon Ojeda, Carnevali & G.A. Romero Maxillariinae Benth. 1 0 0%
164 Ocampoa A. Rich. & Galeotti Cranichidinae Lindl. 1 0 0%
165 Octomeria R.Br. Pleurothallidinae Lindl. 3 0 0%
166 Oestlundia W.E. Higgins Laeliinae Benth. 2 0 0%
167 Oestlundorchis Szlach. Stenorrhynchidinae Szlach. 7 0 0%
168 Orchidotypus Kraenzl. Pachyphyllinae Pfitzer 1 0 0%
169 Palumbina Rchb. f. Oncidiinae Benth. 1 0 0%
170 Paphinia Lindl. Stanhopeinae Benth. 1 0 0%
171 Pelexia Poit. ex Lindl. Cyrtopodiinae Benth. 9 0 0%
172 Peristeria Hook. Coeliopsidinae Szlach. 1 0 0%
173 Phloeophila Hoehne & Schltr. Pleurothallidinae Lindl. 1 0 0%
174 Physosiphon Lindl. Pleurothallidinae Lindl. 2 0 0%
175 Platystele Schltr. Pleurothallidinae Lindl. 17 0 0%
176 Platythelys Garay Goodyerinae Klotzsch 4 0 0%
177 Pleurothallis R. Br. Pleurothallidinae Lindl. 3 0 0%
178 Ponera Lindl. Ponerinae Pfitzer 1 0 0%
179 Ponthieva R. Br. Cranichidinae Lindl. 13 0 0%
180 Potosia (Schltr.) R. González & Szlach. ex Mytnik Cyclopogoninae Szlach. 4 0 0%
181 Prosthechea Knowles & Westc. Laeliinae Benth. 18 0 0%
182 Pseudencyclia Chiron & V.P. Castro Laeliinae Benth. 9 0 0%
183 Pseudogoodyera Schltr. Spiranthinae Lindl. 2 0 0%
184 Psilochilus Barb. Rodr. Triphorinae (Dressler) Szlach. 2 0 0%
185 Psygmorchis Dodson & Dressler Oncidiinae Benth. 3 0 0%
186 Restrepia Kunth Pleurothallidinae Lindl. 7 0 0%
187 Restrepiella Garay & Dunst. Pleurothallidinae Lindl. 2 0 0%
188 Rhetinantha M.A. Blanco Maxillariinae Benth. 4 0 0%
189 Rhinorchis Szlach. Habenariinae Benth. 1 0 0%
190 Rhyncholaelia Schltr. Laeliinae Benth. 2 0 0%
191 Scaphosepalum Pfitzer Pleurothallidinae Lindl. 3 0 0%
192 Scaphyglottis Poepp. & Endl. Ponerinae Pfitzer 18 0 0%
193 Scelochilus Klotzsch Comparettiinae Schltr. 1 0 0%
194 Schiedeella Schltr. Stenorrhynchidinae Szlach. 10 0 0%
195 Schomburgkia Lindl. Laeliinae Benth. 1 0 0%
196 Selbyana Archila Lycastinae Schltr. 16 0 0%
197 Sepalosaccus Schltr. Maxillariinae Benth. 1 0 0%
198 Sigmatostalix Rchb. f. Oncidiinae Benth. 2 0 0%
199 Stacyella Szlach. Oncidiinae Benth. 1 0 0%
200 Stellilabium Schltr. Telipogoninae Schltr. 3 0 0%
201 Stenorrhynchos Rich. ex Spreng. Stenorrhynchidinae Szlach. 4 0 0%
202 Stenotyla Dressler Huntleyinae Schltr. 4 0 0%
203 Svenkoeltzia Burns-Bal. Stenorrhynchidinae Szlach. 1 0 0%
204 Tamayorkis Szlach. Malaxidinae Benth. & Hook. f. 1 0 0%
205 Telipogon Kunth Telipogoninae Schltr. 1 0 0%
206 Teuscheria Garay Bifrenariinae Dressler 2 0 0%
207 Triceratostris Szlach. & R. Gonzalez Spiranthinae Lindl. 1 0 0%
208 Trigonidium Lindl. Maxillariinae Benth. 2 0 0%
209 Trisetella Luer Pleurothallidinae Lindl. 1 0 0%
210 Tropidia Lindl. Tropidiinae Pfitzer 1 0 0%
211 Tubella Archila Pleurothallidinae Lindl. 7 0 0%
212 Tupacamaria Archila Cyrtopodiinae Benth. 1 0 0%
213 Verapazia Archila Pleurothallidinae Lindl. 8 0 0%
214 Warrea Lindl. Warreinae Szlach. 1 0 0%
215 Warscewiczella Rchb. F Huntleyinae Schltr. 1 0 0%
216 Wullschlaegelia Rchb. f. Wullschlaegelliinae (Dressler) Dressler 2 0 0%
217 Xanthoxerampellia Szlach. & Sitko Maxillariinae Benth. 4 0 0%
218 Xylobium Lindl. Xylobiinae Archila 4 0 0%
219 Zhukowskia Szlach., R. González & Rutk. Cyclopogoninae Szlach. 4 0 0%
220 Zootrophion Luer Pleurothallidinae Lindl. 1 0 0%
221 Zosterophyllanthos Szlach. & Marg. Pleurothallidinae Lindl. 9 0 0%
Table 2.

Summary of data known pollinators taking into account the classification at the subtribe level.

Subtribe Species number in Guatemala Species with known pollinator Species with known pollinator (%)
Angraecinae Summerh. 10 0 0%
Arpophyllinae Dressler 5 2 40%
Arundiinae Dressler 1 1 100%
Bifrenariinae Dressler 2 0 0%
Bletiinae Benth. 15 1 7%
Bulbophyllinae Schltr. 5 0 0%
Catasetinae Schltr. 13 7 54%
Chysiinae Schltr. 7 0 0%
Coeliinae Dressler 5 0 0%
Coeliopsidinae Szlach. 1 0 0%
Comparettiinae Schltr. 2 1 50%
Corallorhizinae E.G. Camus, Bergon & A. Camus 5 1 20%
Coeliopsidinae Szlach. 1 0 0%
Cranichidinae Lindl. 25 0 0%
Cryptarrheninae Dressler 2 0 0%
Cyclopogoninae Szlach. 27 4 15%
Cymbidiinae Benth 2 2 100%
Cypripediinae Meisn. 2 2 100%
Cyrtopodiinae Benth. 15 0 0%
Dichaeinae Schltr. 23 2 9%
Elleanthinae Szlach. 6 0 0%
Epidendrinae Szlach. 120 1 1%
Eriopsidinae Szlach. 1 0 0%
Galeottiellinae Salazar & M.W. Chase 1 0 0%
Goodyerinae Klotzsch 16 0 0%
Goveniinae Dressler 15 1 7%
Habenariinae Benth. 29 1 3%
Huntleyinae Schltr. 14 4 29%
Ionopsidinae Pfitzer 3 1 33%
Laeliinae Benth. 104 8 8%
Leochilinae Szlach. 5 2 40%
Lockhartiinae Schltr. 5 0 0%
Lycastinae Schltr. 34 0 0%
Macradeniinae Mansf. 1 1 100%
Malaxidinae Benth. & Hook. f. 34 0 0%
Maxillariinae Benth. 49 3 6%
Meiracylliinae Dressler 2 1 50%
Notyliinae Benth. 8 1 13%
Oncidiinae Benth. 73 10 14%
Ornithocephalinae Schltr. 8 1 13%
Pachyphyllinae Pfitzer 1 0 0%
Phragmipediinae Szlach. 4 1 25%
Pleurothallidinae Lindl. 274 10 4%
Polystachyinae Schltr. 8 1 13%
Ponerinae Pfitzer 29 0 0%
Prescottiinae Dressler 5 1 20%
Sobraliinae Schltr. 47 3 6%
Spiranthinae Lindl. 33 2 6%
Stanhopeinae Benth. 64 14 22%
Stenorrhynchidinae Szlach. 29 1 3%
Telipogoninae Schltr. 4 0 0%
Trichocentrinae Schltr. 1 1 100%
Trichopiliinae Pfitzer 8 2 25%
Triphorinae (Dressler) Szlach. 8 1 13%
Tropidiinae Pfitzer 3 1 33%
Vanillinae Lindl. 10 2 20%
Warreinae Szlach. 1 0 0%
Wullschlaegelliinae (Dressler) Dressler 2 0 0%
Xylobiinae Archila 4 0 0%
Zygopetalinae Schltr. 1 0 0%
Figure 1. 

Pollinators in Guatemalan orchids A Fruit fly visiting Specklinia sp. flower B Hummingbird (Amazilia cyanocephala) pollinating Ornithidium fulgens (photo: Fredy L. Archila Morales) C Fly (Zygothrica sp.) pollinating Masdevallia floribunda.

Discussion

The previous attempt to summarise knowledge on pollination of the Guatemalan orchids was presented by Dix & Dix during the 1st International Congress of Neotropical Orchidology that was held in San José, Costa Rica, in May 2003. In their conference abstract published in Lankesteriana (Dix and Dix 2003), the authors stated that direct observation has enabled them to identify pollinators for 118 species of orchids, representing 16% of the 734 confirmed taxa in Guatemala (number of taxa follows Dix and Dix (2000)). For another 233 species (32%), the literature allowed them to suggest the categories represented by the pollinators. According to their knowledge at the time, the most important orders in pollination were Hymenoptera, responsible for pollinating 46% of the species (Euglossini 16%) and Diptera, which pollinated 28%. This proportion is evident also in our results (see Fig. 2). Only 8% of orchid species were capable of self-pollination according to the authors. Unfortunately, to our best knowledge, these data have not been published and, thus, we are not able to comment on their findings. Since the methodology of their survey also remains unknown, we are not sure if, for instance, if the authors separated visitors from effective pollinators.

Figure 2. 

Visualisation of the contribution of different animal groups to the pollination of Guatemalan orchids.

Studying pollination in tropical orchids presents a myriad of challenges that researchers must navigate to unravel the intricate relationships between these plants and their pollinators. The unique characteristics of tropical ecosystems, coupled with the specialised adaptations of orchids, contribute to the complexity of this research endeavour. One of the primary difficulties lies in the sheer diversity of tropical orchid species (Ackerman et al. 2023). The tropics harbour an extensive array of orchid taxa, each with its distinct morphological and ecological traits. This high diversity often demands specialised knowledge and resources for accurate identification and classification, making it challenging for researchers to establish comprehensive datasets. Furthermore, the cryptic nature of many orchid species exacerbates the difficulty in locating and studying them in their natural habitats. Understanding the intricate pollination mechanisms of tropical orchids proves to be a formidable task. Many orchid species exhibit complex floral structures and employ diverse pollination strategies, including mimicry, deceit and rewards. Deciphering the specific cues that attract pollinators and elucidating the mechanisms that ensure successful pollination necessitate a detailed understanding of both the plant and the associated pollinator community. This complexity poses a significant barrier to researchers seeking to generalise findings across various orchid taxa. The elusive nature of tropical orchid pollinators adds another layer of complication to research efforts. Many orchids depend on specific pollinator species, which may be highly specialised or nocturnal (Ackerman et al. 2023). Identifying and studying these pollinators requires meticulous observation and often involves the use of advanced techniques, such as night-vision equipment and molecular analysis. As a result, access to specialised equipment and the expertise to operate it becomes crucial, making such studies resource-intensive and logistically challenging. Tropical orchids are also vulnerable to environmental changes, including habitat loss and climate fluctuations, which can impact both the plants and their pollinators (Dix and Dix 2007). Understanding the resilience of these intricate relationships in the face of environmental changes requires long-term monitoring and collaboration across disciplines, further complicating the research landscape.

In the study published by Ackerman et al. (2023), it was found that only half of the species records with known reproductive data are epiphytic. This finding is noteworthy considering that approximately 72% of orchid species exhibit epiphytic behaviour (Gravendeel et al. 2004), indicating a significant under-representation of these species in orchid pollination studies. The significant challenge for numerous studies concerning Orchidaceae, especially in tropical regions, is the fact that orchids are characterised by high diversity, yet fewer active pollination biologists work in the region compared to temperate areas (Ackerman et al. 2023). As reported in the mentioned paper, the majority of orchid pollination researchers operate in regions where orchid epiphytes are scarce or non-existent. This geographical bias is evident in the data, with temperate and subtropical latitudes being disproportionately represented due to intensive research activities in regions such as South Africa, southern Australia, Europe and northern America north of Mexico (Ackerman et al. 2023 and references cited therein). Conversely, tropical regions of Africa, Latin America, Temperate Asia and Tropical Asia are severely under-represented. Indeed, the disparity in the representation of scientists from the so-called Global South in the fields of ecology and evolution studies remains a critical issue. Despite the immense biodiversity and ecological significance of regions such as Africa, Latin America and parts of Asia, the voices and perspectives of researchers from these areas are often marginalised. According to Hughes et al. (2023), 83% of all top researchers in ecology and evolution are based in the top 12 countries, which are all European, North American or Australian. Limited access to resources, including funding and advanced research facilities, coupled with systemic barriers, such as language barriers and unequal academic networks, contribute to this imbalance. The consequences are profound, as indigenous knowledge and local expertise crucial for understanding and addressing ecological challenges are often overlooked. Rectifying this imbalance requires concerted efforts to amplify the voices of scientists from the Global South, foster equitable collaborations and dismantle systemic barriers that hinder their participation in global scientific discourse.

Conclusions

The complex and diverse orchid flora in Guatemala remains largely unexplored, particularly in terms of pollination biology. Despite their ecological and cultural significance, a comprehensive understanding of the pollination mechanisms employed by the majority of orchid species in this region eludes us. Research on pollination in tropical orchids presents a formidable challenge due to the immense diversity of species, the intricacies of pollination mechanisms, the elusive nature of pollinators and the susceptibility of these ecosystems to environmental changes. Despite these challenges, the importance of unravelling these mysteries is underscored by the critical role orchids play in tropical ecosystems and their potential implications for conservation and biodiversity. Future research endeavours should address these challenges collaboratively, combining expertise from ecology, botany and entomology to advance our understanding of tropical orchid pollination. Such investigations will not only contribute to our scientific knowledge, but also play a crucial role in developing effective conservation strategies for these enigmatic and often endangered plants.

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Funding

Supported by the Foundation for Polish Science (FNP).

Author contributions

Conceptualization: MML. Formal analysis: MML. Investigation: MML, CB. Supervision: MML. Writing – original draft: MML. Writing – review and editing: MML.

Author ORCIDs

Monika M. Lipińska https://orcid.org/0000-0003-3116-0237

Cecylia Barabasz https://orcid.org/0009-0001-9832-5748

Data availability

All of the data that support the findings of this study are available in the main text.

References

  • Ackerman JD, Montalvo AM (1990) Short-and long-term limitations to fruit production in a tropical orchid. Ecology 71(1): 263–272. https://doi.org/10.2307/1940265
  • Ackerman JD, Phillips RD, Tremblay RL, Karremans AP, Reiter N, Peter CI, Bogarín D, Pérez-Escoba OA, Liu H (2023) Beyond the various contrivances by which orchids are pollinated: Global patterns in orchid pollination biology. Botanical Journal of the Linnean Society 202(3): 295–324. https://doi.org/10.1093/botlinnean/boac082
  • Aguiar JMRBV, de Souza Ferreira G, Sanches PA, Bento JMS, Sazima M (2021) What pollinators see does not match what they smell: Absence of color-fragrance association in the deceptive orchid Ionopsis utricularioides. Phytochemistry 182: 112591. https://doi.org/10.1016/j.phytochem.2020.112591
  • Aguirre-León E (1979) Ecología de la polinización en el género Clowesia (Orchidaceae) en México. BSc Thesis, Universidad Nacional Autónoma de México, Mexico City.
  • Albuquerque NSL, Milet‐Pinheiro P, Cruz DD, Navarro DMAF, Machado IC (2021) Pollination of the strongly scented Sarcoglottis acaulis (Orchidaceae) by male orchid bees: Nectar as resource instead of perfume. Plant Biology 23(5): 719–727. https://doi.org/10.1111/plb.13297
  • Archila F, Szlachetko DL, Chiron G, Lipińska MM, Mystkowska K, Bertolini V (2018) Orchid genera and species in Guatemala. Koeltz Botanical Books, Oberreifenberg, 724 pp.
  • Arévalo-Rodrigues G, de Barros F, Davis AR, Cardoso-Gustavson P (2021) Floral glands in myophilous and sapromyophilous species of Pleurothallidinae (Epidendroideae, Orchidaceae) – Osmophores, nectaries, and a unique sticky gland. Protoplasma 258(5): 1061–1076. https://doi.org/10.1007/s00709-021-01624-2
  • Benitez-Vieyra S, Medina AM, Glinos E, Cocucci AA (2006) Pollinator-mediated selection on floral traits and size of floral display in Cyclopogon elatus, a sweat bee-pollinated orchid. Functional Ecology 20(6): 948–957. https://doi.org/10.1111/j.1365-2435.2006.01179.x
  • Blanco MA, Davies KL, Stpiczyńska M, Carlsward BS, Ionta GM, Gerlach G (2013) Floral elaiophores in Lockhartia Hook.(Orchidaceae: Oncidiinae): their distribution, diversity and anatomy. Annals of Botany 112(9): 1775–1791. https://doi.org/10.1093/aob/mct232
  • Bogarín D (2019) Evolutionary diversification and historical biogeography of Orchidaceae in Central America with emphasis on Costa Rica and Panama. PhD Thesis, Leiden University, Leiden.
  • Bogarín D, Fernández M, Borkent A, Heemskerk A, Pupulin F, Ramírez S, Smets E, Gravendeel B (2018a) Pollination of Trichosalpinx (Orchidaceae: Pleurothallidinae) by biting midges (Diptera: Ceratopogonidae). Botanical Journal of the Linnean Society 186(4): 510–543. https://doi.org/10.1093/botlinnean/box087
  • Bogarín D, Fernández M, Karremans AP, Pupulin F, Smets E, Gravendeel B (2018b) Floral anatomy and evolution of pollination syndromes in Lepanthes and close relatives. In: Pridgeon AM (Ed.) 22nd Proceedings of the World Orchid Conference. Guayaquil, Ecuador, 396–410.
  • Cardoso-Gustavson P, Sousa RS, Barros F (2017) Floral volatile profile in Pleurothallidinae, an orchid subtribe pollinated by flies: Ecological and phylogenetic considerations. Phytochemistry Letters 22: 49–55. https://doi.org/10.1016/j.phytol.2017.09.005
  • Catling PM (1983) Pollination of northeastern North American Spiranthes (Orchidaceae). Canadian Journal of Botany 61(4): 1080–1093. https://doi.org/10.1139/b83-116
  • Catling PM (1987) Notes on the breeding systems of Sacoila lanceolata (Aublet) Garay (Orchidaceae). Annals of the Missouri Botanical Garden 74(1): 58–68. https://doi.org/10.2307/2399262
  • Cen IT (2016) Polinización por engaño de Lophiaris andrewsiae (Orchidaceae: Oncidiinae). Desde El Herbario CICY 8: 4–8.
  • Cetzal-Ix W, Carnevali G, Noguera-Savelli E, Jauregui D (2013) Morphological and anatomical characterization of a new natural hybrid between Cohniella ascendens and C. brachyphylla (Oncidiinae: Orchidaceae). Phytotaxa 144(2): 45–55. https://doi.org/10.11646/phytotaxa.144.2.2
  • Chase MW (1986) Pollination ecology of two sympatric, synchronously flowering species of Leochilus in Costa Rica. Lindleyana 1: 141–147.
  • Chipka SA (2009) The wild orchids of Saba, Netherlands Antilles. Pollinia 7: 7–24.
  • Damon A, Salas-Roblero P (2007) A survey of pollination in remnant orchid populations in Soconusco Chiapas, Mexico. Tropical Ecology 48(1): 1–14.
  • Damon A, Hernández-Ramírez F, Riggi L, Verspoor R, Bertolini V, Lennartz-Walker M, Wiles A, Burns A (2012) Pollination of euglossinophylic epiphytic orchids in agroecosystems and forest fragments in southeast Mexico. European Journal of Environmental Sciences 2(1): 5–14. https://doi.org/10.14712/23361964.2015.34
  • Dix MW, Dix MA (2000) Orchids of Guatemala: A revised annotated checklist. Missouri Botanical Garden Press, St. Louis, 61 pp.
  • Dix MW, Dix MA (2003) Polinización de orquídeas en Guatemala: Los polinizadores, el estado natural de sus poblaciones y las implicaciones para las especies polinizadas. Lankesteriana International Journal on Orchidology 3(2): 97. https://doi.org/10.15517/lank.v3i2.23026
  • Dix MW, Dix MA (2007) Integrated approaches to orchid conservation in Guatemala: Past, present and future, opportunities and challenges. Lankesteriana International Journal on Orchidology 7(1–2): 266–268. https://doi.org/10.15517/lank.v7i1-2.19516
  • Dodson CH (1975) Dressleria and Clowesia: A new genus and an old one revived in the Catasetinae (Orchidaceae). Selbyana 1(2): 130–137.
  • Dressler RL (1976) Una Sievekingia nueva de Colombia. Orquideologia 11: 215–221.
  • Dressler RL (1977) El género Polycycnis en Panamá y Costa Rica. Orquideología 8(1): 117–127.
  • Dressler RL (1993) Field guide to the orchids of Costa Rica and Panama. Cornell University Press, New York, 374 pp.
  • Dressler RL, Pupulin F (2011) Phragmipedium section Phragmipedium. Orchids (West Palm Beach, Fla. ) 80(10): 626–631.
  • Dressler RL (2012) Sobralia decora: the species and its cousins in Mexico and Central America. Orchids 81(5): 308–310.
  • Flach A, Marsaioli AJ, Singer RB, Amaral MDCE, Menezes C, Kerr WE, Batista-Pereira LG, Corrêa AG (2006) Pollination by sexual mimicry in Mormolyca ringens: a floral chemistry that remarkably matches the pheromones of virgin queens of Scaptotrigona sp. Journal of Chemical Ecology 32: 59–70. https://doi.org/10.1007/s10886-006-9351-1
  • Gravendeel B, Smithson A, Slik FJW, Schuiteman A (2004) Epiphytism and pollinator specialisation: Drivers for orchid diversity? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 359(1450): 20041529. https://doi.org/10.1098/rstb.2004.1529
  • Hágsater E, Soto-Arenas M (2003) Icones Orchidacearum Fascicles 5–6. Orchids of Mexico, parts 2–3, Herbario AMO, Mexico DF, 501–700.
  • Hágsater E, Soto-Arenas M (2008) Icones Orchidacearum. Fascicle 10. Orchids of Mexico. Part 4. Herbario AMO, Mexico DF, 1001–1100.
  • Hágsater E, Soto MA, Salazar GA, Jiménez R, López MA, Dressler RL (2005) Orchids of Mexico. Instituto Chinoin, Mexico City, Mexico, 304 pp.
  • Hughes AC, Than KZ, Tanalgo KC, Agung AP, Alexandr T, Kane Y, Bhadra S, Chornelia A, Sritongchuay T, Simla T, Chen Y, Chen X, Uddin N, Khatri P, Karlsson C (2023) Who is publishing in ecology and evolution? the underrepresentation of women and the Global South. Frontiers in Environmental Science 11: 1211211. https://doi.org/10.3389/fenvs.2023.1211211
  • Juárez L, Méndez-Dewar G, Nava-Tablada ME (2016) Aspectos fenológicos y actividad del polinizador de una orquídea terrestre. Rinderesu 1(1): 77–84.
  • Jürgens A, Bosch SR, Webber AC, Witt T, Frame D, Gottsberger G (2009) Pollination biology of Eulophia alta (Orchidaceae) in Amazonia: Effects of pollinator composition on reproductive success in different populations. Annals of Botany 104(5): 897–912. https://doi.org/10.1093/aob/mcp191
  • Karremans AP (2023) Demystifying Orchid Pollination. Kew Publishing, Richmond, 440 pp.
  • Karremans AP, Bogarín DG, Pupulin F, Luer CA, Gravendeel B (2015a) The glandulous Specklinia: Morphological convergence versus phylogenetic divergence. Phytotaxa 218(2): 101–127. https://doi.org/10.11646/phytotaxa.218.2.1
  • Karremans AP, Díaz Morales M (2018) The Pleurothallidinae: extremely high speciation driven by pollination adaptation. In: Pridgeon AM (Ed.) 22nd Proceedings of the World Orchid Conference. Guayaquil, 363–388.
  • Karremans AP, Pupulin F, Grimaldi D, Beentjes KK, Butôt R, Fazzi GE, Kaspers K, Kruizinga J, Roessingh P, Smets EF, Gravendeel B (2015b) Pollination of Specklinia by nectar-feeding Drosophila: The first reported case of a deceptive syndrome employing aggregation pheromones in Orchidaceae. Annals of Botany 116(3): 437–455. https://doi.org/10.1093/aob/mcv086
  • Kipping JL (1971) Pollination studies of native orchids. MSc Thesis, San Francisco State College, San Francisco.
  • Knudsen JT, Tollsten L (1993) Trends in floral scent chemistry in pollination syndromes: Floral scent composition in moth-pollinated taxa. Botanical Journal of the Linnean Society 113(3): 263–284. https://doi.org/10.1111/j.1095-8339.1993.tb00340.x
  • Kolanowska M (2012) Primer registro de polinización de mariposa en la Habenaria monorrhiza (Habenariinae, orchideae). Orquideología 29(2): 115–117.
  • Lipińska MM, Archila Morales FL, Giłka W, Beuk PLTh, Szlachetko DL (2019) First report on effective pollination of Masdevallia floribunda, M. tuerckheimii and their hybrid (Orchidaceae-Pleurothallidinae) by Zygothrica fruit flies (Diptera-Drosophilidae) in Guatemala. Phyton 59: 27–33. https://doi.org/10.12905/0380.phyton59-2019-0027
  • Lipińska MM, Wiśniewska N, Gołębiowski M, Narajczyk M, Kowalkowska AK (2021) Floral micromorphology, histochemistry, ultrastructure and chemical composition of floral secretions in three Neotropical Maxillariella species (Orchidaceae). Botanical Journal of the Linnean Society 196(1): 53–80. https://doi.org/10.1093/botlinnean/boaa095
  • Lipińska MM, Archila Morales FL, Haliński ŁP, Łuszczek D, Szlachetko DL, Kowalkowska AK (2022) Ornithophily in the subtribe Maxillariinae (Orchidaceae) proven with a case study of Ornithidium fulgens in Guatemala. Scientific Reports 12(1): 5273. https://doi.org/10.1038/s41598-022-09146-4
  • Lozano-Rodríguez MA, Alanís-Méndez JL, Enciso-Díaz OJ (2018) Report of a floral visitor of Cypripedium irapeanum (Orchidaceae) in Tepoztlan, Morelos, Mexico. Polibotánica 46(46): 159–167. https://doi.org/10.18387/polibotanica.46.9
  • Luer CA (1975) The native orchids of the United States and Canada, excluding Florida. New York Botanical Garden, New York, 361 pp.
  • Pansarin ER, Amaral MDCE (2006) Biologia reprodutiva e polinização de duas espécies de Polystachya Hook. no Sudeste do Brasil: Evidência de pseudocleistogamia em Polystachyeae (Orchidaceae). Revista Brasileira de Botânica. Brazilian Journal of Botany 29(3): 423–432. https://doi.org/10.1590/S0100-84042006000300009
  • Parra-Tabla V, Abdala-Roberts L, Rojas JC, Navarro J, Salinas-Peba L (2009) Floral longevity and scent respond to pollen manipulation and resource status in the tropical orchid Myrmecophila christinae. Plant Systematics and Evolution 282(1–2): 1–11. https://doi.org/10.1007/s00606-009-0206-4
  • Pemberton RW (2007) Pollination of Guarianthe skinneri, an ornamental food deception orchid in southern Florida, by the naturalized orchid bee Euglossa viridissima. Lankesteriana 7(3): 461–468. https://doi.org/10.15517/lank.v0i0.7928
  • Pemberton RW, Liu H (2008) Potential of invasive and native solitary specialist bee pollinators to help restore the rare cowhorn orchid (Cyrtopodium punctatum) in Florida. Biological Conservation 141(7): 1758–1764. https://doi.org/10.1016/j.biocon.2008.04.016
  • Pupulin F, Bogarín D (2005) The genus Brassia in Costa Rica: A survey of four species and a new species. Orchids (West Palm Beach, Fla. ) 74(3): 202–207.
  • Rodríguez-Flores LM, Barney-Guillermo H, Vázquez-Torres M (1996) Registro de la polinización de Laelia anceps Lindl. (Orchidaceae). La Ciencia y el Hombre 23: 83–92.
  • Rodríguez‐Robles JA, Meléndez EJ, Ackerman JD (1992) Effects of display size, flowering phenology, and nectar availability on effective visitation frequency in Comparettia falcata (Orchidaceae). American Journal of Botany 79(9): 1009–1017. https://doi.org/10.1002/j.1537-2197.1992.tb13690.x
  • Roubik DW, Hanson PE (2004) Abejas de orquídeas de la América tropical: Biología y guía de campo. Editorial Instituto Nacional de Biodiversidad, Santo Domingo de Heredia.
  • Salguero Hernández G, Pupulin F (2019) The new refugium botanicum. Cochleanthes aromatica. Orchids (West Palm Beach, Fla. ) 88(11): 823–825.
  • Sarmiento M, Romero C (2000) Orquídeas mexicanas. Miguel Ángel Porrúa, Mexico City, 148 pp.
  • Silvera K (2002) Adaptive radiation of oil-reward compounds among Neotropical orchid species (Oncidiinae). PhD Thesis, University of Florida, Florida.
  • Singer RB, Flach A, Koehler S, Marsaioli AJ, Amaral MDCE (2004) Sexual mimicry in Mormolyca ringens (Lindl.) Schltr.(Orchidaceae: Maxillariinae). Annals of Botany 93(6): 755–762. https://doi.org/10.1093/aob/mch091
  • Singer RB, Sazima M (2001) The pollination mechanism of three sympatric Prescottia (Orchidaceae: Prescottinae) species in southeastern Brazil. Annals of Botany 88(6): 999–1005. https://doi.org/10.1006/anbo.2001.1535
  • Stpiczyńska M, Kamińska M, Davies KL (2021) Nectar secretion in a dry habitat: Structure of the nectary in two endangered Mexican species of Barkeria (Orchidaceae). PeerJ 9: e11874. https://doi.org/10.7717/peerj.11874
  • Sugiura N (2014) Pollination and floral ecology of Arundina graminifolia (Orchidaceae) at the northern border of the species’ natural distribution. Journal of Plant Research 127(1): 131–139. https://doi.org/10.1007/s10265-013-0587-x
  • Szlachetko DL, Kolanowska M, Muller F, Vannini J, Rojek J, Górniak M (2017) First Guatemalan record of natural hybridisation between Neotropical species of the lady’s slipper orchid (Orchidaceae, Cypripedioideae). PeerJ 5: e4162. https://doi.org/10.7717/peerj.4162
  • van der Cingel NA (2001) An atlas of orchid pollination: America, Africa, Asia and Australia. A.A. Balkema, Rotterdam, 266 pp.
  • Van der Pijl L, Dodson CH (1966) Orchid flowers. Their pollination and evolution. University of Miami Press, Miami, 214 pp.
  • Vega M, Solís-Montero L, Alavez V, Rodríguez-Juárez P, Gutiérrez-Alejo M, Wegier A (2022) Vanilla cribbiana Soto Arenas Vanilla hartii Rolfe Vanilla helleri AD Hawkes Vanilla inodora Schiede Vanilla insignis Ames Vanilla odorata C. Presl Vanilla phaeantha Rchb. f. Vanilla planifolia Jacks ex. Andrews Vanilla pompona Schiede Orchidaceae. In: Casas A, Blancas Vázquez JJ (Eds) Ethnobotany of the Mountain Regions of Mexico, Ethnobotany of Mountain Regions. 1–21. https://doi.org/10.1007/978-3-319-77089-5_53-1
  • Vieira MF, Andrade MRS, Bittencourt NS, de Carvalho-Okano RM (2007) Flowering phenology, nectary structure and breeding system in Corymborkis flava (Spiranthoideae: Tropidieae), a terrestrial orchid from a Neotropical forest. Australian Journal of Botany 55(6): 635–642. https://doi.org/10.1071/BT06193
  • Warford N (1993) The Jaliscan barkerias: B. barkeriola Reichb. f., B. dorotheae Halbinger, B. obovata (Presl.) Christenson, B. palmeri (Rolfe) Schltr., B. uniflora (Llave and Lex.) Dressler and Halbinger. The Orchid Digest.
  • Whitten WM, Williams NH, Armbruster WS, Battiste MA, Strekowski L, Lindquist N (1986) Carvone oxide: An example of convergent evolution in euglossine pollinated plants. Systematic Botany 11(1): 222–228. https://doi.org/10.2307/2418960
  • Wiemer AP, More M, Benitez-Vieyra S, Cocucci AA, Raguso RA, Sersic AN (2009) A simple floral fragrance and unusual osmophore structure in Cyclopogon elatus (Orchidaceae). Plant Biology 11(4): 506–514. https://doi.org/10.1111/j.1438-8677.2008.00140.x
  • Williams NH (1982) The biology of orchids and euglossine bees. Orchid biology: reviews and perspectives 2: 120–171.
  • Williams SA (1994) Observations on reproduction in Triphora trianthophora (Orchidaceae). Rhodora 96(885): 30–43.
  • Williams NH, Whitten WM (1983) Orchid floral fragrances and male euglossine bees: Methods and advances in the last sesquidecade. The Biological Bulletin 164(3): 355–390. https://doi.org/10.2307/1541248
login to comment