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Abstract
Even at the local scale, environmental changes due of anthropogenic actions represent a source of 
disturbance in terrestrial ecosystems, forcing species to respond according to their ecological plastic-
ity. Thus, stenotopic species and those with low-dispersal ability will likely be negatively affected by 
landscape modifications that reduce environmental complexity. In this study, we identify and quantify 
the effects of biotic and abiotic factors related to habitat complexity on the variation in scorpion as-
semblages in terms of both species’ richness, abundance and composition across 18 transects cover-
ing Caatinga landscapes with different levels of degradation. Using ultraviolet flashlights, we sampled 
269 scorpions, belonging to six species and two families. The results showed contrasting patterns of 
species richness and abundance that depend on the level of habitat complexity. More specifically, we 
reported that scorpion species richness could be predicted by the number of trees, while the coefficient 

Neotropical Biology and Conservation  

15(4): 533–550 (2020)

doi: 10.3897/neotropical.15.e59000

Copyright Stênio Ítalo Araújo Foerster et al. This is an open access article distributed under the 
terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original author and source are credited.

RESEARCH ARTICLE

mailto:stenio.foerster@ut.ee
https://doi.org/10.3897/neotropical.15.e59000
http://creativecommons.org/licenses/by/4.0/


Stênio Ítalo Araújo Foerster et al.534

of variation of the diameter at breast height of trees (cvDBH) is a predictor of scorpion abundance. 
These findings suggest that vegetation structure is deterministic for the maintenance of scorpion as-
semblages in Caatinga landscapes. In addition, the cvDBH and tree number may explain 39% and 40% 
of the variability observed amongst scorpion assemblages in terms of richness difference and species 
composition, respectively. This study provides insights concerning the development of conservation 
strategies, clarifying the role of habitat complexity for the preservation of low-dispersal animals in 
neglected environments, such as those within the Caatinga domain.
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Introduction

Species composition derives from a combination of environmental factors and his-
torical events attributed to a given area (Philippi et al. 1998), which can act syner-
gistically to promote the establishment of different species in a community (Moura 
et al. 2016). As the response of species to environmental conditions may diverge 
according to their ecological requirements, the variation in species composition can 
be a sensitive tool to assess relevant environmental changes (Philippi et al. 1998; 
Pardini et al. 2009; Lira et al. 2019a, b). As a logical consequence, the variation in en-
vironmental factors can also be used to predict species interactions and community 
changes (Dunson and Travis 1991; Gilman et al. 2010). Furthermore, understand-
ing the reciprocal processes of how different species interact with their environment 
is the main challenge and the central task in community ecology (Būhning-Gaese 
1997; Sutherland et al. 2013). Clarification of the mechanisms that shape communi-
ties is thus essential to assess the functionalities of the ecosystems (Schneiders et al. 
2012; Hou et al. 2013).

Our ability to determine the impact of environmental factors on species com-
position varies depending upon spatial scale. For instance, if ecological inferences 
are examined at small spatial scales, we expect that dispersal limitations would have 
a minor effect (if any) over the variation in species composition. In this scenario, 
individuals could have access to the resources available within a given area, mean-
ing that space would act as proxy for dispersal limitation (Delatorre et al. 2015). 
This assumption is particularly true if we assume a background of undisturbed en-
vironments, especially those that share the same history of landscape composition. 
In contrast, it is plausible to presume that unstable or disturbed environments can 
experience significant changes in species assemblages, even at small spatial scales, 
especially if unequal sources of environmental variation (e.g. topography, land use, 
habitat fragmentation) are expected to occur within these landscapes (Filgueiras 
et al. 2019; Lira et al. 2019a, b). In addition, variation in assemblage composition 
can also be related to the ecological plasticity of their species, wherein dispersion 
over disturbed environments and habitat requirements may play a key role in the 
spatial distribution of the species (Cavender-Bares and Wilczek 2003; Fischer and 
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Lindenmayer 2007). Thus, species with low-dispersal ability, such as scorpions, are 
suitable for using as a model to infer the effects of environmental constraints of vari-
ation in species assemblages (Polis 1993; Husemann et al. 2012; Nime et al. 2014; 
Lira et al. 2019b), even at small spatial scales (Nime et al. 2013; Foord et al. 2015; 
Dionisio-da-Silva et al. 2018). Nevertheless, the knowledge regarding scorpion ecol-
ogy in South America is scarce, especially those from open vegetation formations, 
such as the Chaco (Nime et al. 2014) and the Caatinga (Porto et al. 2014). These 
biomes harbour a relatively-high scorpion species richness (e.g. Acosta 1995a, b; 
Porto et al. 2014; Lira et al. 2018). The scorpion fauna from the Caatinga domain, 
for example, contains at least 33 described species (Porto et al. 2014; Esposito et al. 
2017; Lira et al. 2017; Santos-da-Silva et al. 2017). However, few studies addressing 
the community ecology of Caatinga scorpions have been published (Araújo et al. 
2010; Carmo et al. 2013; Lira et al. 2018, 2020).

In this study, we aimed to measure and disentangle community parameters 
(species composition, α-diversity and β-diversity components) of scorpion as-
semblages in Caatinga environments at small spatial scales. First, we explored the 
potential responses of scorpion assemblages to environmental features related to 
habitat complexity, identifying and testing the predictors of species richness and 
abundance, as well as the environmental sources of similarity in species composi-
tion. Second, we explored and disentangled the patterns of β-diversity to reveal the 
relative contribution of species replacement and richness, as well as their environ-
mental determinants. Third, we quantified the local contributions to the estimated 
β-diversity across areas of Caatinga with different levels of degradation and tested 
their potential association with species richness to investigate if ecological unique-
ness (sensu Legendre and De Cáceres 2013) is related to an increase or decrease in 
species richness in Caatinga landscapes.

Material and methods

Data sampling

Fieldwork was conducted in three areas of Caatinga vegetation with different levels 
of degradation in the Municipality of Serra Talhada (07°58'53.32"S, 38°17'21.21"W), 
State of Pernambuco, Brazil. The Parque Estadual Mata da Pimenteira (Pimenteira, 
07°54'0.25"S, 38°18'0.58"W) is the most preserved area we sampled in terms of 
vegetation diversity (Suppl. material 1: Fig. S1), comprising a high number of 
woody species, such as Anadenanthera colubrina (Vell.) Brenan, Mimosa tenui-
flora (Willd.) Poir and Croton sp. (Farias et al. 2016). In addition, the high diver-
sity of vertebrates and invertebrates in the Pimenteira area is an indicator of its 
environmental quality (Santos et al. 2013). The second area is the Pollinator Trail 
(07°56'59.40"S, 38°18'0.76"W), located near the campus of the Unidade Acadêmica 
de Serra Talhada (UAST), which is less preserved than the Pimenteira area regard-
ing woody plants. The vegetation in this area is mainly composed of herbaceous 
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plants (Suppl. material 1: Fig. S2), such as Tridax procumbens L., Crotalaria incana 
L. and Alternanthera sp., whereas the woody flora is sparse and mainly represented 
by Mimosa sp., Croton sp. and A. colubrina. Both herbaceous and woody plants 
are distributed in separated patches. Agricultural experiments, such as bean and 
corn cultivation, are frequently implemented around the Pollinator Trail as part 
of the curricular activities of the courses offered at the UAST campus. Saco Road 
(07°57'2.83"S, 38°17'40.09"W) is the third area, comprising the most homogeneous 
landscape (Suppl. material 1: Fig. S3), with vegetation cover mainly composed by 
herbaceous plants, such as Sida galheirensis Ulbr. and Waltheria sp., without arbo-
real or shrubby species. Livestock activities and the presence of a dirt road repre-
sent the most important sources of degradation at Saco Road, but this area is not 
considered an urban environment due to the lack of human habitations nearby. In 
each area, six straight-line transects of 30 m × 10 m were established (100 m apart).

All transects were sampled in March 2015 and September 2016 for five consecu-
tive days each month (2–6 Mar 2015 / 1–5 Sep 2016). Scorpions were collected at 
night, by three collectors who randomly walked each transect for 1 h using ultravio-
let flashlights to detect scorpions because they glow a bright cyan-green under ultra-
violet light (Gaffin et al. 2012). At night, a thermo-hygrometer was used to measure 
the mean temperature and the mean relative humidity of the soil within each tran-
sect, based on three individual measurements performed at each 10 m along the 
centre of each transect. These variables were measured in both campaigns (March 
and September) and pooled for the computation of the overall mean values of tem-
perature and relative humidity of the soil. Structural elements, including the amount 
of debris, number of trees and their diameter at breast height (DBH) were recorded 
during the day. For the amount of debris, we refer to the sum of the number of rocks 
(≥ 10 cm long), fallen logs (diameter ≥ 15 cm) and sticks (≥ 20 cm long) falling 
underneath a straight line (30 m long) extended along the centre of each transect. 
Trees that touched the reference line were counted and their DBH were measured. 
The structural elements cited above were counted in both campaigns and pooled for 
the computation of the overall mean values of the amount of debris observed in each 
transect. All environmental variables were recorded by the same collector (SIAF). 
Scorpions were identified according to Lourenço (2002) and Esposito et al. (2017). 
Voucher specimens are deposited in the Arachnological collection at the Universi-
dade Federal de Pernambuco – Recife, Brazil (curator: Dr. Débora Almeida).

Data analysis

Sampling efficiency was estimated separately for each area (Pimenteira, Pollinator 
Trail and Saco Road) using rarefaction/extrapolation curves, based on the estimator 
of species richness described in Chao et al. (2014) and implemented in ‘iNEXT’ R 
package (Hsieh et al. 2020; R Core Team 2020). Considering that habitat heterogene-
ity can be represented by a quantitative estimation of structural elements present in a 
given area (McCoy and Bell 1991; Carvalho and Barros 2017), we therefore used the 
amount of debris (rocks, fallen logs and sticks), the number of trees and the coefficient 
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of variation of their DBH (cvDBH) as environmental proxies to represent habitat 
complexity in each transect. The cvDBH of the trees were obtained using the ‘raster’ 
R package (Hijmans 2020). Thereafter, the ‘usdm’ R package (Naimi et al. 2014) was 
used to compute the variance inflation factor (VIF) for all variables, confirming the 
absence of multicollinearity problems (VIF ≤ 5.82) according to the criteria proposed 
by O’Brien (2007). Responses of both species richness and abundance to habitat com-
plexity were then modelled using generalised linear mixed-effects models (GLMMs) 
to account for the nested structure of our sampling design, which was included as a 
random term (Zuur et al. 2009). GLMMs were constructed using the ‘lme4’ package 
(Bates et al. 2015) in the R environment and fitted with a Poisson error structure after 
a prior square root transformation of the environmental variables to reduce asym-
metries due to extreme values (Zuur et al. 2009). Models were initially fitted with all 
environmental variables and then simplified to contain only significant (p < 0.05) 
variables. The simplification procedure consisted of simply dropping non-significant 
predictors in decreasing order of significance (i.e. removing the variable with the larg-
est p value after each instance where the model was fitted) until only significant vari-
ables remained (Zuur et al. 2009). After that, irregularities related to model overfitting 
were analysed using the χ2 test of “goodness of fit” implemented in the ‘aods3’ R pack-
age (Lesnoff and Lancelot 2018). Correlation structures within the dataset were ana-
lysed using a principal component analysis (PCA) with prior standardisation (mean = 
0, unit variance = 1) of input variables. In addition, similarity patterns in species com-
position amongst scorpion assemblages were graphically analysed using an UPGMA 
cluster constructed from a dissimilarity matrix of species composition, based on the 
quantitative form the Podani-family of the Sørensen dissimilarity index (Legendre 
2014), estimated in the ‘adespatial’ R package (Dray et al. 2019).

The relative contribution of species replacement and richness difference to the 
overall β-diversity were accessed using the ‘adespatial’ R package taking the com-
munity matrix (sites × species) as input and applying the quantitative form of the 
Podani-family decomposition of Sørensen dissimilarity (Legendre 2014). This de-
composition method was chosen because it returns Euclidean matrices of richness 
difference that are suitable for ordination methods (Legendre 2014) and required 
for the downstream analysis used in this study. Moreover, the Euclidean propri-
ety can also be approximated for the species replacement matrix after a square 
root transformation (Legendre 2014; Borcard et al. 2018). Yet, the response of spe-
cies composition to the habitat complexity proxy variables was modelled using a 
redundancy analysis (RDA) after a logarithmic transformation (Anderson et al. 
2006) of the community matrix and the standardisation of environmental vari-
ables. Similarly, the influence of habitat complexity on both species’ replacement 
and richness difference (β-diversity terms) were measured using a series of dis-
tance-based redundancy analysis (dbRDA) as proposed by McArdle and Anderson 
(2001) and applying a Lingoes correction to avoid negative eigenvalues (Legendre 
and Anderson 1999); the species replacement matrix was square-rooted prior to 
dbRDA (Legendre 2014). For all constraining ordinations (RDA and dbRDA), 
we fitted full models containing all environmental variables and then applied a 



Stênio Ítalo Araújo Foerster et al.538

forward selection to retain only significant (p < 0.05) variables to the final mod-
els (Borcard et al. 2018). Statistical significance and explanatory power of these 
models were accessed using, respectively, permutation tests (1000 permutations) 
and the unbiased coefficient of determination (R2

adj), proposed by Peres-Neto et al. 
(2006), both implemented in the ‘vegan’ R package (Oksanen et al. 2019). Finally, 
the local contributions to β-diversity (LCBD) were first quantified for each transect 
using the ‘adespatial’ R package and applying the Hellinger transformation to the 
community matrix and then regressed against the species richness observed in 
each transect using a simple Pearson correlation test implemented in the ‘stats’ R 
package (R Core Team 2020).

Results

A total of 269 scorpions were collected, comprising six species: Bothriurus asper Po-
cock, 1893, Bothriurus rochai Mello-Leitão, 1932, Jaguajir agamemnom (C.L. Koch, 
1839), Jaguajir rochae (Borelli, 1910), Physoctonus debilis (C.L. Koch, 1841) and Tity-
us stigmurus (Thorell, 1876). The most abundant species were J. rochae (n = 91), P. de-
bilis (n = 84) and B. rochai (n = 73). All species were present in Pimenteira, of which, 
J. agamemnom and T. stigmurus occurred only in this location (Table 1). In terms of 
species richness, the sampling strategy and effort applied to collect scorpions deliv-
ered a satisfactory coverage of the assemblages present in the three areas (Fig. 1). The 
correlation structures amongst species abundance and environmental predictors re-
vealed that the most abundant species (e.g. J. rochae, B. rochai and P. debilis) were 
mainly correlated with environmental features related to the vegetation structure, 
while climatic factors (temperature and relative humidity of the soil) correlated with 
low-abundance species, such as B. asper, J. agamemnom and T. stigmurus (Fig. 2A). 
Overall, environmental variables related to vegetation structure contributed more 
to the first two axis of the PCA than those variables related to climatic conditions 
(Suppl. material 1: Table S1). Additionally, Saco Road and Pollinator Trail were the 

Table 1. Species composition and absolute number of scorpion species collected at Pimenteira, Pol-
linator Trail and Saco Road (Pernambuco, Brazil). Specimens were collected in March 2015 and Sep-
tember 2016, during the rainy (R) and dry (D) season, respectively. The sample effort resulted in the 
collection of 269 specimens.

Species Pimenteira Pollinator Trail Saco Road
D R Total D R Total D R Total

Bothriurus asper Pocock, 1893 1 3 4 2 2 4 2 3 5
Bothriurus rochai Mello-Leitão, 1932 14 39 53 1 2 3 8 9 17
Jaguajir agamemnom (C.L. Koch, 1839) 2 0 2 0 0 0 0 0 0
Jaguajir rochae (Borelli, 1910) 19 44 63 7 12 19 5 4 9
Physoctonus debilis (C.L Koch, 1841) 64 4 68 14 2 16 0 0 0
Tityus stigmurus (Thorell, 1876) 4 2 6 0 0 0 0 0 0
Total 104 92 196 24 18 42 15 16 31
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most similar in terms of species composition and climatic characteristics (Fig. 2A) – 
a pattern also recovered when species composition was analysed separately (Fig. 2B).

Generalised linear mixed-effects models detected significant responses of scorpi-
on assemblages to the vegetation structure observed in each transect: the number of 
trees had a positive effect upon species richness (estimate ± SE = 0.23 ± 0.1; z = 2.34; 
p = 0.02, Fig. 3A), whereas scorpion abundance could be predicted by the cvDBH of 
trees (estimate ± SE = 0.08 ± 0.03; z = 2.33; p = 0.02, Fig. 3B). Environmental predic-
tors related to vegetation structure were markedly different amongst sampling locali-
ties, with Pimenteira being the most heterogeneous environment in terms of number 
and DBH of trees (Fig. 3C, D). No overfitting was detected during the modelling of 
species richness (χ2

(15) = 5.48, p = 0.99) or species abundance (χ2
(15) = 21.38, p = 0.12).

The decomposition of the total β-diversity (βtotal = 0.30) computed for the 
entire region (i.e. pooling the data from all sampling localities) revealed the large 
contribution of richness difference (80%) over species replacement amongst tran-
sects (20%). Species replacement could be explained only by temperature (dbRDA: 
F(1) = 1.53, p = 0.01; R2

adj = 0.03). Pimenteira was the most variable site in terms of 
soil temperature differences (Fig. 3E). Variation in species richness were explained 
only by the number of trees amongst transects (dbRDA: F(1) = 12.02, p < 0.01; 
R2

adj = 0.39). However, variation in the cvDBH of trees explained 40% of the species 

Figure 1. Species rarefaction/extrapolation curves showing the sampling efficiency of scorpions col-
lected at Pimenteira, Saco Road and the Pollinator Trail (Pernambuco, Brazil). Solid lines represent 
the species richness observed from the number of individuals collected in each site, while the dashed 
line is a prediction (extrapolation) of the species richness if the sampling effort were multiplied by 
two. Grey shades around the estimated sampling curves correspond to their 95% confidence interval.
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Table 2. Absolute number of species and individuals collected from scorpion assemblages sampled at 
Pimenteira, Pollinator Trail and Saco Road (Pernambuco, Brazil). Scorpions were collected across 18 
straight-line transects of 30 m × 10 m (six transects in each area). Geographical coordinates (longitude, 
latitude) were provided for each transect, as well as their local contributions to β-diversity (LCBD).

Transect Site Longitude and Latitude Number of species Number of individuals LCBD
1 Pimenteira -7.9065, -38.3002 3 36 0.0290
2 Pimenteira -7.9054, -38.3003 3 40 0.0165
3 Pimenteira -7.9045, -38.3004 3 26 0.0178
4 Pimenteira -7.9035, -38.3005 5 34 0.0142
5 Pimenteira -7.9027, -38.3008 6 36 0.0204
6 Pimenteira -7.9016, -38.3010 6 24 0.0210
7 Pollinator Trail -7.9566, -38.2981 2 6 0.0669
8 Pollinator Trail -7.9558, -38.2986 2 8 0.0750
9 Pollinator Trail -7.9550, -38.2992 4 13 0.0149
10 Pollinator Trail -7.9542, -38.2997 3 7 0.0670
11 Pollinator Trail -7.9534, -38.3002 3 4 0.0133
12 Pollinator Trail -7.9526, -38.3070 2 4 0.0635
13 Saco Road -7.9510, -38.2934 1 1 0.1569
14 Saco Road -7.9507, -38.2943 1 2 0.1094
15 Saco Road -7.9505, -38.2951 3 4 0.0632
16 Saco Road -7.9502, -38.2962 3 9 0.0516
17 Saco Road -7.9499, -38.2971 3 9 0.0516
18 Saco Road -7.9497, -38.2980 2 6 0.1478

Figure 2. Correlation structures amongst species abundance and environmental predictors measured 
at Pimenteira, Saco Road and the Pollinator Trail (Pernambuco, Brazil), as summarised by two PCA 
axes that account for 70.1% of the total variation within the dataset (A). Environmental predictors are 
temperature (temp), relative humidity of the soil (ur), amount of debris (debr), number of trees (trees) 
and the coefficient of variation of their diameter at breast height (cvDBH); species abbreviation can be 
interpreted from Table 1. UPGMA topology depicting the similarity pattern amongst transects (tips) 
of each sampling locality (point symbols) obtained from the computation of quantitative Sørensen’s 
dissimilarity index (B).
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composition amongst transects (RDA: F(1) = 12.5, p < 0.01; R2
adj = 0.40). Finally, the 

degree of ecological uniqueness, measured for the species composition observed in 
each transect, ranged from 0.10 to 0.16 (Table 2), being negatively correlated with 
species richness (r = -0.71, t(16) = -4.08, p < 0.01, Fig. 3F).

Figure 3. Effect plot depicting the relationship between scorpion richness and the number of trees 
(A) and scorpion abundance with the DBH of trees measured at Pimenteira, Saco Road and the Pol-
linator Trail (Pernambuco, Brazil) (B); grey shades represent the 95% confidence intervals around the 
predictor values obtained from the generalised linear mixed-effects models. Numerical differences in 
the number (C) and DBH of trees (D) amongst sampling localities are also presented. Species com-
position varies as a function of temperature differences (see Results) and the thermal profile of each 
sampling site is summarised in boxplot panel (E). The linear relationship between species richness and 
local contribution to β-diversity is illustrated by the output of a Pearson correlation (F), in which the 
95% confidence interval is represented by the grey shade.
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Discussion

In this study, we assessed the effects of environmental structure on scorpion diversi-
ty patterns in 18 linear transects covering the three Caatinga areas with different lev-
els of environmental degradation and, thus, habitat complexity. Overall, our results 
indicated that heterogeneous areas of Caatinga typically support more scorpion spe-
cies. These results corroborate previous assumptions that scorpion assemblages are 
sensitive to habitat structure, with complex habitats containing a greater number of 
species than monotonous landscapes (e.g. Smith 1995; Druce et al. 2007; Foord et 
al. 2015; Lira et al. 2016). Moreover, we disentangled the effects of habitat complex-
ity and revealed that, amongst the environmental variables considered in this study, 
vegetation structure was deterministic for the modulation of scorpion assemblages 
in terms of both α-diversity (species richness and abundance) and β-diversity (spe-
cies composition and richness difference). In theory, vegetation structure may in-
crease environmental complexity by providing a set of suitable microhabitats (Reid 
and Hochuli 2007; Morales et al. 2008; Habel et al. 2018). In such circumstances, 
species richness is expected to increase and this may, in part, be explained by the 
reduced exposure to predation due to the presence of more physical barriers as the 
complexity of the environments increases (Keiser et al. 2018; Lichtenstein et al. 
2019). This seems to be the case observed in Pimenteira and the Pollinator Trail, 
in which habitat complexity, mediated by local vegetation structure (Fig. 3C, D), 
allows the occurrence of ground-dwelling dominant species, such as B. rochai and 
J. rochae (Carmo et al. 2013; Lira et al. 2018) and also the niche specialist species 
P. debilis, found only on tree trunks of woody plants. Consequently, these findings 
have important implications for the development of conservation strategies. Cur-
rent trends in anthropogenic land use will both reduce habitat complexity, leading 
to a potential reduction in levels of α and β diversities in arthropod assemblages, 
as demonstrated here and in previous studies (Ribeiro et al. 2015; Ribeiro-Neto et 
al. 2016; Lira et al. 2019b). This is especially important in Caatinga environments 
because the exploitation of woody vegetation is a common subsistence activity prac-
tised by local people in Brazilian semi-arid regions (Silva et al. 2018).

Vegetation structure may also be involved in the maintenance of arthropod as-
semblages, not only by its direct and additive effects upon the availability of physical 
microhabitats, but also by establishing a microclimate favourable to the occurrence 
of a plethora of species (Leal et al. 2016; Mata et al. 2017). In the case of scorpi-
ons, previous studies have demonstrated that the variation in species richness and 
composition may follow climatic clines (Lira et al. 2019b), even at small spatial scales 
(Foord et al. 2015). Accordingly, our results indicated that scorpion assemblages are 
responsive to temperature variations in terms of species replacement. This suggests 
that climatic features play a relevant role in the maintenance of species variability 
amongst scorpion assemblages, which is in accordance with previous studies that 
investigate the effects of climatic variation on scorpion assemblages at local and 
regional scales (e.g. Araújo et al. 2010; Lira et al. 2018). This finding could also 
explain why sites with similar vegetation structure and thus climatic conditions, 



Vegetation structure as the main source of variability in scorpion assemblages 543

are expected to harbour similar scorpion assemblages in term of species composi-
tion (Fig. 2A, B). This assumption, however, should be confirmed by future studies 
addressing the potential effects of microclimatic conditions on the structuring of 
scorpion assemblages in Caatinga landscapes. Ideally, such studies should be tem-
porally broad, to encompass entire climatic trends (e.g. precipitation seasonality) 
present in Caatinga environments (Silva et al. 2018). Nevertheless, we reiterate that 
ineffective efforts to preserve the native vegetation in Caatinga landscapes may lead 
to a reduction in the species pool of arthropod assemblages mediated by the reduc-
tion of physical microhabitats and the homogenisation of their climatic conditions. 
A similar mechanism was adopted to explain the reduction of species richness in 
other taxa, such as ants (Arnan et al. 2018) and dung beetles (Liberal et al. 2011).

The variation in species composition observed in our study may be a product 
of the spatial dispersal capabilities of scorpions (Polis et al. 1985; Bryson Jr et al. 
2016), combined with the ecological plasticity inherent to each species (Prendini 
2001). Thus, the assembly of scorpion communities would be modulated by the 
trade-off between the degree of anthropogenic disturbance observed in each area 
(Pimenteira, Saco Road and the Pollinator Trail) and the ecological traits of scor-
pion species, especially those related to dispersion and resource exploitation (e.g. 
microhabitat use). These assumptions could explain the negative relationship be-
tween species richness and LCBD observed here (Fig. 3F), corroborating the idea 
that changes in species composition amongst scorpion assemblages may be linked 
to the environmental degradation mediated by human activities related to land 
use (Lira et al. 2016, 2019b). Interestingly, the high contribution of the richness 
difference component (80%) to overall β-diversity, reported in our study, is an in-
dicator that dispersal limitation may not be an important source of species varia-
tion amongst scorpion assemblages at small spatial scales. Instead, this pattern of 
β-diversity would likely be produced by a combination of both biological interac-
tions and environmental filters (Legendre et al. 2005; Legendre 2014). This implies 
that conservation strategies should ideally be broad in terms of habitat coverage and 
size, in order to ensure the sustainability of local biodiversity throughout potential 
ecological corridors (Legendre et al. 2005). We advocate that such recommenda-
tions can be useful to support decision-makers during the development of new poli-
cies addressing the conservation of Caatinga landscapes, giving special weight for 
the preservation of the remnants of native vegetation, alongside improvement of 
current policies aiming to create sustainable management of natural resources in 
the Brazilian semi-arid regions.

Conclusions

The present study corroborates the assumption that changes in species composition 
amongst scorpion assemblages may be mediated by anthropogenic land use (e.g. 
roads and farming). Moreover, human-related land use modifies species composi-
tion and promotes reductions in abundance and species diversity in scorpion as-
semblages of Caatinga and Atlantic Rainforest environments, as already reported 
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by previous studies (Lira et al. 2016, 2019b; Dionisio-da-Silva et al. 2018). In this 
sense, the combination of high rates of unsustainable exploration for natural re-
sources in Caatinga (Santos et al. 2014; Silva et al. 2018), the poor knowledge of its 
fauna, particularly for scorpions (Porto et al. 2014) and other arthropods (Bravo 
and Calor 2014) and negligence imposed by the political authorities of Brazil repre-
sent a threat to Brazilian biodiversity.
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