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Abstract
Biomonitoring programs need to balance accurate responses in assessments of changes in biologi-
cal communities with sampling that is fast and low cost. In this study, we evaluated the concordance 
among fish and phytoplankton communities of streams. We tested the cross-taxa surrogacy, taxonom-
ic, numerical resolution and ecological substitute group (habitat use and trophic guilds) resolution 
with Procrustes analyses aim of simplifying the biomonitoring process. We collect a total fish abun-
dance of 8,461 individuals, represented by the ecological classes of habitat, including benthic, nekton-
ic, nektobenthic, marginal and trophic guilds by detritivore, terrestrial invertivore, aquatic invertivore, 
piscivore, algivore and herbivore. We sampled a phytoplankton total density of 1,466.68 individuals/
ml, represented by four Morphology-Based Functional Groups and nine Reynolds Functional Groups. 
Our results don’t support the use of substitute groups among fish and phytoplankton. For fish, habitat 
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use and trophic guild are good surrogates for species-level data. Additionally, our results don’t sup-
port the use of functional groups as surrogates for phytoplankton. We suggest the use of higher taxo-
nomic levels (genus and family) and record only the occurrence of species and/or genus for fish and 
phytoplankton. Our findings contribute to decreasing the costs and time of biomonitoring programs 
assessments and/or conservation plans on fish and phytoplankton communities of headwater streams.
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Introduction

Environmental changes are primarily caused by anthropogenic drivers. As a con-
sequence, we experience an accelerated global loss of species (Ceballos et al. 2015, 
2017; Crist et al. 2017). In this sense, it is urgent to develop strategies to under-
stand and monitor the consequences of environmental changes on biodiversity 
(Maćkiewicz et al. 2018). Sampling species along an area of interest and over time is 
often used as a tool for environmental assessment and monitoring. However, finan-
cial and human resources used for these activities are often limited. These resources 
require optimizing sampling protocols that are less expensive yet do not compro-
mise the quality of information (Kallimanis et al. 2012; Maćkiewicz et al. 2018).

Biodiversity estimates can be time-consuming and expensive (Bates et al. 2007), 
mainly in regions with large territorial extensions, such as Brazil (Bessa et al. 2011). 
These factors impose several limitations when associated with the low availability 
of financial resources for these purposes (Kallimanis et al. 2012). Therefore, many 
studies investigate alternative approaches to simplify the procedure of obtaining in-
formation in biomonitoring, i.e., to reduce the time of identification and associated 
costs (Landeiro et al. 2012). Proposals for the simplification of biomonitoring pro-
grams may include: i.) taxonomic resolution, where higher taxonomic levels (genus 
or family) are used as surrogates for species (Heino and Soininen 2007; Carneiro 
et al. 2010; Machado et al. 2015); ii.) numerical resolution, where species presence/
absence data are used as surrogates for abundance data (Landeiro et al. 2012; Rosa 
et al. 2014; Gomes et al. 2015); iii.) substitute groups, where a group can replace 
another when they are present in concordance with species distribution variation 
(Bini et al. 2007; Gioria et al. 2011; Ruhí and Batzer 2014); iv.) ecological substitute 
group, where the community composition is based on easily recognizable ecological 
characteristics (e.g. ecomorphology) and a strong power to replace the taxonomic 
composition, reducing the need for identification at the species level (Carneiro et al. 
2010; Trigal et al. 2014; Machado et al. 2015).

Despite the importance and utility of aquatic groups in biomonitoring pro-
grams, a great part of simplification protocols have investigated only isolated taxo-
nomic groups. This approach ignores the interaction between assemblages and the 
potential concordance (Padial et al. 2014). The spatial concordance among aquatics 
groups can occur because groups respond to similar drivers; for example, water 



Alternatives for the biomonitoring of fish and phytoplankton in tropical streams 363

transparency and nutrient limitation (phosphorus and nitrogen) for phytoplank-
ton and periphyton (e.g., Rodrigues and Bicudo 2004). Furthermore, groups with 
different drivers (e.g. fish and phytoplankton) (Mazaris et al. 2010; Sharma et al. 
2016; Erős et al. 2016) may also have concordance due to their links in the trophic 
web (Thomson et al. 2014). Concordant spatial distribution among different taxo-
cenoses could provide the opportunity for sampling simplification by sampling a 
single taxonomic group.

The proposed simplification protocols for sampling, identification and charac-
terization of species have involved different water bodies (e.g., streams, rivers, lakes, 
ponds) and several aquatic groups, such as phytoplankton (Gallego et al. 2012; Car-
neiro et al. 2010; Machado et al. 2015), zooplankton (Gomes et al. 2015; Vieira et al. 
2017), macroinvertebrates (Sanchez-Moyano et al. 2006; Tataranni et al. 2009) and 
mollusks (Zuschin et al. 2015). However, it is noteworthy that most studies mainly 
focus on evaluating the use of substitute groups. In a few cases, studies have used 
other approaches, such as numerical and taxonomic resolution (Grenouillet et al. 
2008, see more in Suppl. material 1: Table S1). In this context, we evaluated the 
concordance of the spatial ordering among fish and phytoplankton communities 
of streams through four strategies (substitute group, taxonomic, numerical resolu-
tion and ecological substitute group) with the aim of simplifying the biomonitor-
ing process. Therefore, our objectives were guided by the following questions: i.) 
Is there a spatial concordance between species and coarser taxonomic resolution 
(i.e., genus, family and order)? ii.) Is it possible to replace the abundance/density 
of species/genus/family data by merely the presence/absence of data? iii.) Is there a 
concordance between the taxonomic level (species) and the ecological classification 
of species? And iv.) is there concordance between the spatial distribution of fish and 
phytoplankton species?

Materials and methods

Study area

Sampling was performed during the dry period of 2013 in 29 Cerrado streams, in 
the Tocantins River basin (Fig. 1). The Tocantins River extends over 1,960 km, with 
spring in the Goiás plateau, at about 1,000 m altitude. It is formed by the union of 
Almas and Maranhão rivers, with its mouth in Marajó Bay (Meirelles et al. 2007). 
The predominant climate of this region is tropical and humid, with two well defined 
seasons. The rainy period dominates between October and April and the dry pe-
riod between May and September (MMA 2006). The average annual temperature of 
the Tocantins-Araguaia basin is 26 °C (MMA 2006). Sampled streams in the sub-
basin of the Santa Teresa River, North region of Goiás state are mostly of headwater 
ranging from first to third order (Strahler 1957). In general, the sub-basin of the 
Santa Teresa River presents a near pristine condition with the maintenance of 75% 
of the native vegetation remaining in its watershed (Borges et al. 2016). Therefore, 
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although the sampled streams reach a short environmental gradient, 40% of the 
streams present more than 20% of the land use with anthropogenic activities for cat-
tle raising in the watershed (see Suppl. material 1: Fig. S1). The stretches of streams 
studied are mainly mesohabitats of backwaters and riffles, a neutral pH, low concen-
trations of nutrients and chlorophyll-a (Suppl. material 1: Table S2).

Biological data

We used a protocol widely employed for sampling of phytoplankton and fish com-
munities (Uieda and Castro 1999; Bicudo and Menezes 2006; Bellinger and Sigee 
2010). Since the planktonic communities are widely dispersed, and greater diversity 
and abundance occur mainly in lentic environments, we prioritize the mesohabitats 
of backwaters for phytoplankton collection. In each stream, a phytoplankton sample 
was performed by collecting approximately 100 ml of water in the subsurface (0.5 m 
depth) and storing the sample in dark jars. After collection, each sample was fixed 
with modified acetic acid (Vollenweider 1974). Individual counting was performed 
in an inverted microscope (Zeiss Axiovert 25), at 400× magnification, following the 
Utermöl sedimentation method (Utermöhl 1958). Identification was conducted to 

Fig. 1. Location of streams sampled in the upper Tocantins River basin, sub-basin of the Santa Teresa 
River, region of the Brazilian Cerrado.
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the lowest possible taxonomic level and organisms were classified according to ge-
nus, family and order according to Round (1965), Round (1971) and Round et al. 
(1990). Afterwards, fish were collected with an electrofishing apparatus along an 80 
meter stretch in each stream. Electrofishing was conducted from downstream to up-
stream, exploring all types of microhabitats along the 80 m reaches (Barbosa et al. 
2019). The individual fish captured were fixed in a 10% formalin solution and trans-
ferred to 70% ethanol after 72 h. The species were identified to the lowest possible 
taxonomic level by consulting specialized literature (Claro-García and Shibatta 2013; 
Lima and Caires 2011; Miranda and Mazzoni 2003) and specialist (Carvalho FR).

Ecological classification data

Phytoplankton species were grouped into two functional groups (Morphology-
Based Functional Groups – MBFGs and Reynolds Functional Groups – RFGs) 
according to the classification proposed by Kruk et al. (2010) updated by Reyn-
olds et al. (2014) and Reynolds et al. (2002) revised by Padisák et al. (2009). The 
MBFG approach classifies species into eight functional groups according to their 
morphological characteristics, such as cell size (e.g., biovolume and surface area), 
silica structure, biological form (unicellular, colonies, filaments) and the presence 
of flagella, aerotops, heterocysts and mucilage. The RFG group classifies the species 
by their morphological characteristics, environmental and physiological tolerances, 
habitat preferences and life history.

The fish species were classified ecologically into three groups: i.) habitat use 
guilds, according to ecomorphological characteristics, ii.) trophic data, according 
to diet information, and iii.) habitat use in conjunction with trophic data (see Suppl. 
material 1: Table S3). In relation to habitat use, fish were classified as benthic, nek-
tonic, nektobenthic and marginal, based on their ecomorphological characteristics, 
as well as from the literature (Teresa and Casatti 2012). The benthic fish usually have 
a dorso-ventrally flattened body, long caudal peduncle and ventral mouth (Breda et 
al. 2005; Oliveira et al. 2010; Negret 2016). The nektonic fish usually present a com-
pressed body, a high, compressed caudal peduncle and a short, terminal mouth (Ol-
iveira et al. 2010). The species of nektobenthic fish are more diverse and generally 
have a relatively low cylindrical body and a subterminal mouth (Breda et al. 2005), 
but are also composed of fish with a very high and compressed caudal peduncle, 
mainly those species of the family Cichlidae. The marginal fish guild is composed 
of fish with morphological characteristics of other guilds (benthic, nektonic and 
nektobenthic), but they explore predominantly stream margins and not the main 
channel. The trophic information was obtained by analyzing the stomach content of 
fish of the size considered to be at adult stage. For this, three steps were followed: i.) 
the stomachs were extracted by dissection; ii.) empty stomachs were excluded from 
the analysis; and iii.) the contents of the remaining stomachs were exposed to Petri 
dishes and examined under a microscope. The food items were separated into six 
trophic categories: detritivore, terrestrial invertivore, aquatic invertivore, piscivore, 
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algivore and herbivore. The volume of food items larger than 1mm in height was 
estimated from the known water volume displacement in the water column. For 
items smaller than 1mm, the volume was estimated from the area occupied in Petri 
dish with the aid of the graph paper (Hyslop 1980). To describe the species diet, the 
Alimentary Index (AIi) was calculated for each food item (Kawakami and Vazzoler 
1980), determined by the following equation:
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where AIi = alimentary index, n = food item, Fi = frequency of occurrence (%) of 
each item, Vi = volume of each item in percentage.

The matrices of ecological classification were obtained by multiplying the abun-
dance data (species relative abundance by site matrix) by habitat use (species by 
habitat use matrix), trophic data (species by diet items matrix) or habitat use to-
gether with trophic data (see Suppl. material 1: Table S3) resulting in matrices of 
ecological groups (habitat use, diet or habitat use together with diet) by site (Lavorel 
et al. 2008).

Data analysis

The abundance of fish, habitat use and trophic data, and density data of phyto-
plankton, MBFGs and RFGs were log-transformed (x+1) to minimize the effect 
of extreme values (Legendre and Legendre 2012). Then, these data were used to 
build distance matrices using Bray-Curtis (abundance/density data) and Jaccard 
(presence/absence) coefficients. Subsequently, we applied the Principal Coordinate 
Analysis (PCoA) to build the fish and phytoplankton matrix to be compared in Pro-
crustes analysis (see more details in Suppl. material 1: Fig. S2). We used a Procrustes 
analysis to evaluate the concordance between the compared matrices (Legendre and 
Legendre 2012).

In order to evaluate the taxonomic resolution (proposal of using higher levels), 
we performed pairwise comparisons of species, genera, families and orders matrices. 
In this case, we compared the different taxonomic resolutions with fish abundance 
and phytoplankton density. For numerical resolution (proposal of using occurrence 
data), the matrices compared were: abundance matrix versus presence/absence ma-
trix for fish and density matrix versus presence/absence matrix for phytoplankton. 
Numerical resolution was also performed among all taxonomic levels combinations 
(i.e., species, genera, families and orders). In order to analyze the ecological sub-
stitute group (proposal of using ecological classifications), the matrices compared 
for fish were: species abundance matrix versus habitat use guild, trophic guild, and 
combined trophic data with habitat use. The analysis of the ecological substitute 
group for phytoplankton compared the following matrices: density matrix versus 
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MBFGs and RFGs ecological classification. In order to evaluate the concordance be-
tween fish and the spatial distribution of phytoplankton (surrogate group proposal), 
we used both fish abundance matrices versus phytoplankton density and the pres-
ence/absence matrices for fish versus presence/absence matrix for phytoplankton.

The Procrustes analysis correlation values (r) range from 0 to 1 (Legendre and 
Legendre 2012). In general, we considered values of r ≥ 0.7 to indicate highly con-
cordant values (Heino 2010). The significance of the r values was evaluated through 
9,999 permutations. All analyses were performed in the R (R Core Team 2018) sta-
tistical software. For PCoA ordination analysis, we used the cmdscale function in 
the stats package. For Procrustes analysis, we used the protest function in the vegan 
package (Oksanen et al. 2016).

Results

We identified 47 fish species, comprising 39 genera, 16 families and five orders, with 
a total abundance of 8,461 individuals (see more details about distribution by point in 
Suppl. material 1: Fig. S3). The most abundant families were Characidae with 5,012 
individuals, Crenuchidae with 1,353 and Loricariidae with 1,314 individuals. Regard-
ing the fish ecological classification, based on the position in water column (habitat use 
guild), we observed 17 benthic, 10 nektonic, 13 nektobenthic and seven marginal spe-
cies and for trophic guilds we provide the proportions for items found in fish stomachs 
(Suppl. material 1: Table S3). Regarding phytoplankton, we identified 65 species, dis-
tributed in 27 genera, 20 families and 10 orders. The taxonomic class with highest den-
sity was Bacillariophyceae, with 1,371.65 individuals/ml, followed by Chlorophyceae, 
with 91.23 individuals/ml (see more details about distribution by point in Suppl. mate-
rial 1: Fig. S4). We observed representatives of four MBFGs (Groups III, IV, VI and VII) 
and nine RFGs (Groups J, F, MP, P, A, D, B, H1, S1). We observed representatives of five 
MBFGs (Groups III, IV, VI, VII and VIII, Suppl. material 1: Fig S5) and the epilithon 
species of group VI showed the highest abundance. We also found nine RFGs (Groups 
J, F, MP, P, A, D, B, H1, S1, Suppl. material 1: Fig. S6), being the MP group, represented 
by planktonic and epilithon species, the most abundant in most areas of streams.

In general, the taxonomic resolution presented significant results up to the or-
der level (Table 1), although the concordance values decreased with the increase in 
taxonomic resolution level. Species versus genus and species versus family resolu-
tions were highly correlated for fish (presented greater r values than 0.8). For phy-
toplankton, only taxonomic resolutions of species versus genus showed significant 
correlations and r > 0.7 (Table 1). For numerical resolution, although the fish and 
phytoplankton groups also presented significant results up to the level of order, both 
indicated the possibility of using presence/absence data as a surrogate for species 
abundance/density data, genus and family (r > 0.7; P < 0.05) (Table 1).

Among the ecological classification groups for fish, the concordance tests be-
tween species abundance and ecological classification by habitat use together with 
trophic guilds presented a high concordance (r > 0.7; P < 0.05). The test of concord-
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ance between species abundance and habitat use group presented significant results 
with correlation coefficient marginally lower than 0.7 (Table 1). The concordance 
between species abundance and trophic guild was significant (r > 0.7; Table 1). For 
phytoplankton, despite significant results for MBFGs and RFGs, correlations were 
low (r < 0.6) (Table 1). Fish and phytoplankton data generated non-concordant or-
dination patterns (P > 0.05) (Table 1).

Discussion

The distribution patterns of fish and phytoplankton species are maintained at the 
taxonomic level of genus comparable to those revealed at the species level. For 
fish, we find concordance with similar predictability power at the family level. Nu-

Table 1. Procrustes tests using abundance (ab), density (den) and presence/absence (pa) matrices, 
fish ecological classification and phytoplankton functional groups. Significant r values greater than 0.7 
marked in bold.

Tested matrices Procrustes
r P

Fish taxonomic resolutions
Species vs. Genus 0.97 0.001
Species vs. Family 0.84 0.001
Species vs. Order 0.68 0.001
Fish numerical resolutions
Species (ab) vs. Species (pa) 0.92 <0.001
Species (ab) vs. Genus (pa) 0.89 <0.001
Species (ab) vs. Family (pa) 0.71 <0.001
Species (ab) vs. Order (pa) 0.39 0.015
Phytoplankton taxonomic resolutions
Species vs. Genus 0.71 <0.001
Species vs. Family 0.68 <0.001
Species vs. Order 0.63 <0.001
Phytoplankton numerical resolutions
Species (den) vs. Species (pa) 0.97 <0.001
Species (den) vs. Genus (pa) 0.75 <0.001
Species (den) vs. Family (pa) 0.7 <0.001
Species (den) vs. Order (pa) 0.59 <0.001
Fish ecological substitute group
Species (ab) vs. Ecological classification (habitat use guild) 0.69 <0.001
Species (ab) vs. Ecological classification (trophic guild) 0.72 <0.001
Species (ab) vs. Ecological classification (habitat use guild + trophic guild) 0.75 <0.001
Phytoplankton ecological substitute group
Species vs. MBFGs 0.58 <0.002
Species vs. RFGs 0.56 <0.001
Fish vs. phytoplankton concordance
Fish (ab) vs. Phytoplankton (den) 0.61 0.964
Fish (pa) vs. Phytoplankton (pa) 0.57 0.925
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merical resolution (presence/absence) tests on species/genus/family levels for both 
groups (fish and phytoplankton) presented high concordance values. The ecologi-
cal substitute group for fish presented r values above that recommended to indicate 
highly concordant values (Heino 2010). In this sense, we consider these results 
promising and suggest further tests to evaluate the reliability in using this informa-
tion as an efficient alternative approach. We support the substitution of taxonomic 
and numerical resolutions for fish and phytoplankton, as well as ecological substi-
tute group for fish. We also highlight that our results do not support the use of fish 
as a substitute group for phytoplankton. Nevertheless, we acknowledge the need 
of caution when applying these coarser measures and suggest them as a potential 
tool for use at species and genus level. These alternatives are indicated mainly for 
adverse situations when there is a shortage of resources necessary to implement 
environmental assessment and monitoring strategies and/or difficulty in accessing 
expert taxonomists for the identification of fish and phytoplankton.

Taxonomical resolution

Our results indicated that the use of coarser taxonomic resolutions of genus (phy-
toplankton and fish) and family (fish) may be possible when rapid environmental 
assessments are required for streams. This is because reaching the species level dur-
ing identification may be a problem for inexperienced researchers (Williams et al. 
2006) and it takes less time to identify taxonomic levels such as genus and family 
(Kallimanis et al. 2012). In addition, some groups are difficult to identify, generat-
ing a dependence on taxonomists. The identification of species by a taxonomist is 
important; however, access to specialists is not always easy for ecologists and con-
servation biologists (Bevilacqua et al. 2009; Halme et al. 2015). For example, for fish 
identification in the Loricariidae family, it is necessary to observe bony structures 
that require diaphanization with more costly and time-consuming procedures (see 
Loricariidae fish identification keys in Covain and Fisch-Muller 2007; Vera-Alcaraz 
et al. 2012). Identification is also difficult for phytoplankton, as it may involve rec-
ognizing structures that are not always present in samples (e.g., depending on the 
algae sample fixation and preservation, some structures can be lost; for example, 
formalin causes flagella to fall off, hindering the identification of flagellated organ-
isms) (Bicudo and Menezes 2006). Moreover, the identification process also involves 
groups with different morphologies and requires knowledge of the life cycle (e.g., 
type of sexual or asexual reproduction) (Carneiro et al. 2013). Therefore, with ac-
celerated biodiversity loss and from a biological and statistical point of view, coarser 
identification may be more suitable than incorrect species identification (James et 
al. 1995; Rimet and Bouchez 2012).

Other studies have also found similar results regarding the use of higher 
taxonomic levels for aquatic organisms, such as benthic macroinvertebrates and 
diatoms (Heino and Soininen 2007), phytoplankton (Carneiro et al. 2010, 2013), 
aquatic Nepomorpha (Giehl et al. 2014), zooplankton (Gomes et al. 2015; Mis-
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sias et al. 2017), phytoplankton, periphyton, zooplankton, aquatic macrophytes 
and fish (Ribas and Padial 2016). A study with marine mollusks has shown that 
beta diversity is maintained for genus and family (Terlizzi et al. 2009), demon-
strating that heterogeneous patterns are maintained at coarser levels. The use of 
family as a surrogate for species has already been approached in another study as 
an important way to decrease the effect of dominant species in a sample (Khan 
2006). In case of replacement by a higher level, many studies show that the closer 
this ratio to 1, the better the higher taxa approach (Bevilacqua et al. 2012; Rosser 
2017). Thus, our results support the use of genus for phytoplankton, and genus 
and family for fish.

Numerical resolution

Our results show that the use of abundance and presence/absence matrices gener-
ates concordant patterns. Other studies with different groups such as phytoplankton 
(Carneiro et al. 2010), plants (Landeiro et al. 2012) and zooplankton (Gomes et 
al. 2015) agree with the use of presence/absence data instead of abundance/den-
sity data. Therefore, the use of presence/absence data for fish and phytoplankton is 
recommended for streams at species and/or genus levels. As r value for family was 
very close to 0.7, we understand that in this case the use of numerical resolution for 
family is a bold and optimistic proposal (Bevilacqua et al. 2012; Rosser 2017). In 
any case, it is interesting to record solely the occurrence of the species and/or genus, 
reducing analysis time by dispensing the complete sample count. It is also worth 
highlighting that the numerical resolution of the presence/absence data approach 
requires fewer animals to be captured, avoiding unnecessary sacrifice.

Ecological substitute group

Our results found a significant concordance between species abundance/density 
with the ecological classification for fish and phytoplankton, respectively. Howev-
er, the low correlation coefficient value of MBFG and RFG ecological classification 
indicates a non-correspondence of the ecological ordination for phytoplankton 
species. Therefore, we do not suggest its use as a surrogate for species taxonomic 
information (Gallego et al. 2012; Machado et al. 2015). For fish, the ecological clas-
sification of the habitat, together with trophic guilds, showed higher concordance 
with species abundance data. Whenever possible, it’s interesting to prioritize the 
application of this classification to monitor streams. A negative point that should 
be highlighted is that the data obtained may be more complex, especially trophic 
data. Classification with the trophic guild also presented a high concordance, but 
to analyze the diet of fish requires a more experienced professional with specific 
knowledge. We understand that other classifications considering functional fish 
traits related to breeding and life cycle would contribute to a more robust un-
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derstanding of the biological response to environmental changes. However, these 
approaches demand knowledge about the species and this is unavailable in some 
cases. Therefore, it would not facilitate the application in biomonitoring programs 
by a less qualified person. Considering the cost-effectiveness of monitoring bio-
logical communities in streams, using this ecological classification may be more 
interesting to complement the assessment of anthropic impacts than to replace 
species-level taxonomic resolution. The ecological substitute group based on habi-
tat use presented r values marginally lower than 0.7. Thus, we highlight the advan-
tages of this proposal for future studies to facilitate the ease of classification of fish, 
for the independence in identifying fish at the species level, and the possibility of 
it being conducted by a trained technician.

Classifying fish in terms of their ecomorphological pattern considers their 
morphotypes (Casatti and Castros 2006; Oliveira et al. 2010). That is, body char-
acteristics can be easily visually observed (e.g., body compression, caudal peduncle 
compression and mouth orientation). Nektonic fish, for example, have a terminal 
mouth, compressed caudal body and a peduncle (i.e., laterally flattened) (Gatz 1979; 
Watson and Balon 1984; Oliveira et al. 2010). Therefore, a trained technician would 
be able to work in different regions, without having prior knowledge of a species 
that occurs in different river basins. Moreover, biological monitoring with an eco-
morphological approach for fish encompasses a variety of ecological niches and can 
provide an impact measurement on aquatic ecosystems, as it may reflect the effect 
of anthropic pressures (Karr et al. 1986; Barbour et al. 1999; Oliveira et al. 2010). 
Therefore, the ecological classification of fish is a potential tool that requires further 
testing to ultimately support this approach in biomonitoring assessments and con-
servation plans.

Surrogate group

Our results showed no concordance between phytoplankton and fish. Thus, the 
distribution patterns of both groups can respond differently to preferences and 
adaptations to available environmental factors. In addition, biotic interactions are 
possibly weak and may be related to different life history traits (Heino 2002; Bow-
man et al. 2008; Guareschi et al. 2015). Biological groups that are not phylogeneti-
cally related, such as phytoplankton and fish, tend to be irreplaceable (Morais et 
al. 2018), as corroborated by our results. This finding highlights the unique im-
portance of each taxonomic group in environmental monitoring and biodiversity 
assessments (Heino 2015). In addition, the lack of concordance among taxa is 
due to their response to the local environment at different scales (Backus-Freer 
and Pyron 2015), i.e., the scale may be influencing the lack of concordance. The 
concordance between groups tends to be larger at large scales, such as several 
river basins (Grenouillet et al. 2008; Gioria et al. 2011; Backus-Freer and Pyron 
2015). In our study, samplings were carried out at a scale relevant to management 
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(landscape scale), and thus require caution to generalize the results to other scales 
(Landeiro et al. 2012).

Other studies in aquatic ecosystems also support that environmental monitoring 
based on a single taxonomic group cannot be easily applied to other biotic groups 
(Heino et al. 2005; Dolph et al. 2011; Larsen et al. 2012; Padial et al. 2012; Vieira et 
al. 2015). Caution when using this type of approach stems from the high variability 
in levels of concordance between substitutes’ groups tested in other studies (Morais 
et al. 2018). Our results suggest that care should be taken when approaches based 
on one group are extrapolated to other groups in the assessment of the environ-
mental conditions of headwater streams since the power to generate useful predic-
tions regarding other taxonomic groups may be limited. Therefore, from a practical 
point of view, we suggest that biologists, environmental consultants, environmental 
managers and conservation planners rely on approaches of monitoring integrating 
producer groups (e.g. phytoplankton and periphyton) and consumers (e.g. fish). 
With these approaches, it will certainly be possible to develop more comprehensive 
and sustainable conservation strategies (e.g., meeting social, environmental and 
economic demands).

Conclusions

The best alternative approaches for the biomonitoring of fish and phytoplankton 
in headwater streams are using higher taxonomic levels (genus and family) and re-
cording only species and/or genus occurrence. For fish, the ecological classification 
provides useful information, but with a lower level of concordance. In a cost-effec-
tive perspective, habitat use could be a good option due to its simplicity in classify-
ing fish independently of taxonomic identification, which could make the biological 
assessment easy for a less qualified professional. The results found for taxonomic 
and numerical resolution have been consistent in the literature and are therefore 
strongly recommended.
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